Symbiodiniaceae
| Symbiodiniaceae | |
|---|---|
| Symbiodinium | |
| Scientific classification | |
| Domain: | Eukaryota |
| Clade: | Sar |
| Clade: | Alveolata |
| Phylum: | Dinoflagellata |
| Class: | Dinophyceae |
| Order: | Suessiales |
| Family: | Symbiodiniaceae Fensome, Taylor, Norris, Sarjeant, Wharton & Williams, 1993 |
| Genera | |
Symbiodiniaceae is a family of marine dinoflagellates notable for their symbiotic associations with reef-building corals,[1] sea anemones,[2] jellyfish,[3] marine sponges,[4] giant clams,[5] acoel flatworms,[6] and other marine invertebrates. Symbiotic Symbiodiniaceae are sometimes colloquially referred to as Zooxanthellae, though the latter term can be interpreted to include other families of symbiotic algae as well.[7] While many Symbiodiniaceae species are endosymbionts, others are free living in the water column or sediment.[8]
Most symbiotic members of Symbiodiniaceae were previously assigned to the genus Symbiodinium; however, recent genetic analysis has led to a taxonomic reorganization with several former members of Symbiodinium (previously "clades") reassigned to new genera within the Symbiodiniaceae family.[9] Species formerly classified within Symbiodinum Clade A are retained in the Symbiodinium genus.[10]
Genera
[edit]There are eleven accepted genera in this family:[11]
Corals and Symbiodiniaceae Corals flourish mostly because of their symbiosis with photosynthetic dinoflagellates from the Symbiodiniaceae family, which live within coral tissues and provide the bulk of the host's energy demands via photosynthesis. This long-standing mutualism is critical to the production and success of reef systems. Genetic and evolutionary data indicate that the Symbiodiniaceae evolved in conjunction with reef-building corals during the Jurassic Period, highlighting their close evolutionary relationships. Although formerly thought to be a single genus, these symbionts are really a heterogeneous set of lineages with varied physiological and ecological characteristics that influence host tolerance to environmental stresses such as temperature changes. Variation among Symbiodiniaceae symbionts can thus dictate coral temperature tolerance and susceptibility to bleaching, highlighting the critical significance of microbial partners in coral survival in a constantly changing environment.[12]
References
[edit]- ^ Rocha de Souza, Mariana (7 September 2022). "Community composition of coral-associated Symbiodiniaceae differs across fine-scale environmental gradients in Kāne'ohe Bay". Royal Society Open Science. 9 (9) 212042. Bibcode:2022RSOS....912042D. doi:10.1098/rsos.212042. PMC 9459668. PMID 36117869.
- ^ Porro, Barbara (January 2021). "Horizontal acquisition of Symbiodiniaceae in the Anemonia viridis (Cnidaria, Anthozoa) species complex". Molecular Ecology. 30 (2): 391–405. Bibcode:2021MolEc..30..391P. doi:10.1111/mec.15755. hdl:10754/666148. PMID 33249664.
- ^ Enrique-Navarro, Angélica (8 March 2022). "Living Inside a Jellyfish: The Symbiosis Case Study of Host-Specialized Dinoflagellates, "Zooxanthellae", and the Scyphozoan Cotylorhiza tuberculata". Frontiers in Marine Science. 9 817312. Bibcode:2022FrMaS...917312E. doi:10.3389/fmars.2022.817312. hdl:10261/272478.
- ^ Van Der Windt, Niels; Van Der Ent, Esther; Ambo-Rappe, Rohani; De Voogd, Nicole (December 2020). "Presence and Genetic Identity of Symbiodiniaceae in the Bioeroding Sponge Genera Cliona and Spheciospongia (Clionaidae) in the Spermonde Archipelago (SW Sulawesi), Indonesia". Frontiers in Ecology and Evolution. 8 595452. Bibcode:2020FrEEv...895452V. doi:10.3389/fevo.2020.595452.
- ^ Mies, Miguel (11 September 2019). "Evolution, diversity, distribution and the endangered future of the giant clam–Symbiodiniaceae association". Coral Reefs. 38 (6): 1067–1084. Bibcode:2019CorRe..38.1067M. doi:10.1007/s00338-019-01857-x.
- ^ Bien, T; Hambleton, E.A.; Dreisewerd, K (April 2021). "Molecular insights into symbiosis—mapping sterols in a marine flatworm-algae-system using high spatial resolution MALDI-2-MS imaging with ion mobility separation". Analytical and Bioanalytical Chemistry. 413 (10): 2767–2777. doi:10.1007/s00216-020-03070-0. PMC 8007520. PMID 33274397.
- ^ Baker, Andrew C. (2011). "Zooxanthellae". Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series. pp. 1189–1192. doi:10.1007/978-90-481-2639-2_280. ISBN 978-90-481-2638-5.
- ^ Fujise, Lisa (3 November 2020). "Unlocking the phylogenetic diversity, primary habitats, and abundances of free-living Symbiodiniaceae on a coral reef". Molecular Ecology. 30 (1): 343–360. doi:10.1111/mec.15719. hdl:10453/144250. PMID 33141992.
- ^ Ziegler, Maren; Arif, Chatchanit; Voolstra, Christian R. (2019). "Symbiodiniaceae Diversity in Red Sea Coral Reefs & Coral Bleaching". Coral Reefs of the Red Sea. Coral Reefs of the World. Vol. 11. pp. 69–89. doi:10.1007/978-3-030-05802-9_5. ISBN 978-3-030-05800-5.
- ^ LaJeunesse, Todd C (20 August 2018). "Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts". Current Biology. 28 (16): 2570–2580. Bibcode:2018CBio...28E2570L. doi:10.1016/j.cub.2018.07.008. hdl:10754/630499. PMID 30100341.
- ^ Guiry, M.D. & Guiry, G.M. (2023). Guiry MD, Guiry GM (eds.). "Symbiodiniaceae Fensome, Taylor, Norris, Sarjeant, Wharton & Williams, 1993". AlgaeBase. National University of Ireland, Galway. World Register of Marine Species. Retrieved 1 February 2023.
{{cite web}}: CS1 maint: multiple names: authors list (link) - ^ LaJeunesse, Todd C.; Parkinson, John Everett; Gabrielson, Paul W.; Jeong, Hae Jin; Reimer, James Davis; Voolstra, Christian R.; Santos, Scott R. (August 2018). "Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts". Current Biology. 28 (16): 2570–2580.e6. Bibcode:2018CBio...28E2570L. doi:10.1016/j.cub.2018.07.008. hdl:10754/630499. PMID 30100341.