2025 in paleoichthyology

Several new fossil taxa of jawless vertebrates, placoderms, cartilaginous fishes, bony fishes, and other fishes were described during the year 2025, which also saw other significant discoveries and events related to paleoichthyology.

Jawless vertebrates

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Deanaspis[1]

Gen. et sp. nov

Junior homonym

Lin et al.

Silurian

Xikeng Formation

China

A member of Galeaspida. Genus includes new species D. longpingi. The generic name is preoccupied by Deanaspis Hughes, Ingham & Addison (1975).

Neoturinia rossensis[2]

Sp. nov

Burrow & Turner

Devonian

Parke Siltstone

Australia

A thelodont.

Jawless vertebrate research

[edit]
  • Märss (2025) revises jawless vertebrates from the Silurian (Wenlock) to Devonian (Lochkovian) strata of the Ufa Amphitheatre (Russia), and names a new family Tahulaspididae within Osteostraci.[3]
  • Sanchez-Sanchez, Sanisidro & Ferrón (2025) study the hydrodynamic performance of headshield processes of members of Pteraspidomorphi, reporting evidence of repeated, independent evolution of frontal, dorsal and lateral processes in response to functional demands.[4]
  • A study on the phylogenetic relationships of members of Heterostraci is published by Randle, Keating & Sansom (2025).[5]
  • Schnetz et al. (2025) reconstruct the whole-body morphology of Anglaspis heintzi, and interpret its oral apparatus as indicative of adaptation to suspension feeding.[6]
  • Miyashita et al. (2025) provide new information on the anatomy of the head–trunk interface in Norselaspis glacialis, reporting evidence of presence of features previously known only in jawed vertebrates, and interpret their findings and indicative of evolution of sensory elaborations and increase of cardiac output and locomotory control in vertebrates before the appearance of the vertebrate jaw.[7]

Placoderms

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Albarutheniaspis[8]

Gen. et sp. nov

Newman & Plax

Devonian (Famennian)

Belarus

A member of the family Groenlandaspididae. The type species is A. bessonovae.

Bothriolepis zhujiangyuanensis[9]

Sp. nov

Valid

Xian et al.

Devonian (Eifelian)

Shangshuanghe Formation

China

Elmosteus[10]

Gen. et comb. nov

Valid

Jobbins et al.

Devonian

Elm Point Formation

Canada
( Manitoba)

A basal dunkleosteid placoderm; a new genus for "Eastmanosteus" lundarensis Hanke, Stewart & Lammers (1996).

Microbrachius longi[11]

Sp. nov

Valid

Mark-Kurik et al.

Devonian (Givetian)

Burtnieki Formation

Estonia

Romundina gagnieri[12]

Sp. nov

Olive et al.

Devonian (Lochkovian)

Drake Bay Formation

Canada
( Nunavut)

Tongdulepis[13]

Gen. et sp. nov

Valid

Luo, Pan & Zhu

Devonian (Eifelian)

Qujing Formation

China

A member of Bothriolepidoidei belonging to the family Tubalepididae. The type species is T. concavus.

Placoderm research

[edit]
  • Babcock (2025) designates the neotype for Macropetalichthys rapheidolabis and the lectotype for Agassichthys manni, redescribes the lectotype of Agassichthys sullivanti, and interprets A. manni, A. sullivanti and Pterichthys norwoodensis as junior synonyms of M. rapheidolabis.[14]
  • Pears et al. (2025) reconstruct the appendicular skeleton and musculature of arthrodires from the Devonian Gogo Formation (Australia), providing evidence of anatomical similarity of fins and musculature of the studied specimens.[15]
  • Redescription and a study on the affinities of Exutaspis megista is published by Xue et al. (2025).[16]
  • Trinajstic et al. (2025) describe new fossil material of Bullerichthys fascidens from the Devonian Gogo Formation (Australia), providing new information on the morphology of the headshield in the studied species, as well as evidence resorption and remodelling of teeth similar to those seen in bony fishes.[17]

Cartilaginous fishes

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Altacollum[18]

Gen. et sp. nov

Valid

Newman & Plax

Devonian (Famennian)

Starobin Beds

Belarus
Greenland

An acanthodian. The type species is A. valiukeviciusi.

Angelacanthus[19]

Gen. et comb. nov

Valid

Gess & Burrow

Devonian (Famennian)

Waterloo Farm lagerstätte

South Africa

A diplacanthid acanthodian. The type species is "Diplacanthus" acus Gess (2001).

Antrigoulia guinoti[20]

Sp. nov

Valid

Duffin & Batchelor

Early Cretaceous

Lower Greensand Group

United Kingdom

Apolithabatis[21] Gen. et sp. nov Türtscher et al. Late Jurassic (Kimmeridgian) Painten Formation Germany A ray in the new clade Apolithabatiformes. The type species is A. seioma.

Archaeogracilidens[22]

Gen. et comb. nov

Valid

Villalobos-Segura et al.

Late Jurassic (Kimmeridgian)

Germany

A member of Hexanchiformes belonging to the family Orthacodidae. The type species is "Oxyrhina" macer Quenstedt (1851).

Batillodus[23]

Gen. et sp. nov

Valid

Duffin, Lauer & Lauer

Carboniferous (Kasimovian)

Kansas City Group

United States
( Kansas)

A member of Petalodontiformes belonging to the family Janassidae. The type species is B. beaveri.

Callorhinchus orientalis[24]

Sp. nov

Valid

Ota et al.

Late Cretaceous (Maastrichtian)

Hakobuchi Formation

Japan

A species of Callorhinchus.

Centrodeania perchensis[25]

Sp. nov

Feichtinger et al.

Late Cretaceous

Germany

A member of the family Centrophoridae.

Clavusodens[26]

Gen. et sp. nov

Valid

Hodnett et al.

Carboniferous (Viséan)

Ste. Genevieve Formation

United States
( Kentucky)

A member of Petalodontiformes belonging to the family Obruchevodidae. The type species is C. mcginnisi.

Coquandon[27]

Nom. nov

Valid

Greenfield

Late Cretaceous (Coniacian)

France

A probable member of Galeomorphii; a replacement name for Orthodon Coquand (1859).

Distobatus potiguarense[28]

Sp. nov

Brito et al.

Cretaceous

Açu Formation

Brazil

A member of Hybodontiformes belonging to the family Distobatidae.

Dorsetoscyllium belbekensis[29]

Sp. nov

Trikolidi

Early Cretaceous (Berriasian)

Crimea

A carpet shark. Published online in 2025, but the issue date is listed as December 2024.

Eorapax[30]

Gen. et sp. nov

Valid

Saugen et al.

Early Triassic

Vikinghøgda Formation

Norway

A neoselachian. The type species is E. serrasis.

Galeocerdo platycuspidatum[31]

Sp. nov

Valid

Cicimurri et al.

Oligocene

Catahoula Formation

United States
( Mississippi)

A species of Galeocerdo.

Heckelodes[27]

Nom. nov

Valid

Greenfield

Oligocene

Italy

A probable member of Galeomorphii; a replacement name for Galeodes Heckel (1854).

Hemipristis intermedia[31]

Sp. nov

Valid

Cicimurri et al.

Oligocene

Catahoula Formation

United States
( Mississippi)

A species of Hemipristis.

Hypanus? heterodontus[31]

Sp. nov

Valid

Cicimurri et al.

Oligocene

Catahoula Formation

United States
( Mississippi)

A whiptail stingray.

Lethenia carranzaensis[32]

Sp. nov

Valid

Otero

Eocene-Oligocene

Millongue Formation

Chile

Lonchidion conrugis[33]

Sp. nov

Wick & Lehman

Late Cretaceous (Campanian)

Aguja Formation

United States
( Texas)

Macadens[34]

Gen. et sp. nov

Valid

Hodnett et al.

Carboniferous (Viséan)

Ste. Genevieve Formation

United States
( Kentucky)

A member of Euchondrocephali of uncertain affinities. The type species is M. olsoni.

Modicucollum[18]

Gen. et sp. nov

Valid

Newman & Plax

Devonian (Famennian)

Velizhie Beds

Belarus

An acanthodian. The type species is M. golubtsovi.

Ndhalalepis[2]

Gen. et sp. nov

Burrow & Turner

Devonian

Parke Siltstone

Australia

An acanthodian. The type species is N. youngi.

Palaeocentroscymnus bavaricus[25]

Sp. nov

Feichtinger et al.

Late Cretaceous

Germany

A member of the family Somniosidae.

Paralopias[35]

Gen. et sp. nov

Valid

Canevet

Miocene (Serravallian)

France

A thresher shark. Genus includes new species P. follioti.

Pararhincodon torquis[36]

Sp. nov

Valid

Dearden et al.

Late Cretaceous

Chalk Group

United Kingdom

A carpet shark belonging to the stem group of the family Parascylliidae.

Pseudorhina carinata[20]

Sp. nov

Valid

Duffin & Batchelor

Early Cretaceous

Lower Greensand Group

United Kingdom

Pseudorhina clopellensis[20]

Sp. nov

Valid

Duffin & Batchelor

Early Cretaceous

Lower Greensand Group

United Kingdom

Pseudorhina magnapraecinctorium[20]

Sp. nov

Valid

Duffin & Batchelor

Early Cretaceous

Lower Greensand Group

United Kingdom

Restesia corricki[33]

Sp. nov

Wick & Lehman

Late Cretaceous (Campanian)

Aguja Formation

United States
( Texas)

Rotuladens[34]

Gen. et comb. nov

Valid

Hodnett et al.

Carboniferous (Tournaisian-Viséan)

Keokuk Limestone

United States
( Iowa)

A member of Euchondrocephali of uncertain affinities. The type species is "Helodus" coxanus Newberry (1897).

Serpensiugum[18]

Gen. et sp. nov

Valid

Newman & Plax

Devonian (Famennian)

Starobin Beds

Belarus

An acanthodian. The type species is S. pushkini.

"Sphyrna" gracile[31]

Sp. nov

Valid

Cicimurri et al.

Oligocene

Catahoula Formation

United States
( Mississippi)

A hammerhead shark.

"Sphyrna" robustum[31]

Sp. nov

Valid

Cicimurri et al.

Oligocene

Catahoula Formation

United States
( Mississippi)

A hammerhead shark.

Strophodus timoluebkei[37]

Sp. nov

Valid

Carrillo-Briceño et al.

Late Jurassic

Sulzfluh Limestone Formation

 Switzerland

cf. Synechodus rotheliusi[30]

Sp. nov

Valid

Saugen et al.

Early Triassic

Vikinghøgda Formation

Norway

Verrucasquama[18]

Gen. et sp. nov

Valid

Newman & Plax

Devonian (Famennian)

Starobin Beds

Belarus

An acanthodian. The type species is V. antipenkoi.

Wimanodon[30]

Gen. et sp. nov

Valid

Saugen et al.

Early Triassic

Vikinghøgda Formation

Norway

A neoselachian. The type species is W. marmieri.

Xiphodolamia maliki[38]

Sp. nov

Valid

Artüz & Sakınç

Eocene (Lutetian)

Soğucak Formation

Turkey

Cartilaginous fish research

[edit]
  • A study on the development of the dermal skeleton of Fanjingshania renovata is published by Andreev et al. (2025).[39]
  • A diverse assemblage of cartilaginous fish fossils, including the youngest record of Phoebodus latus reported to date, is described from the Upper Devovian strata from the South Urals (Russia) by Ivanov et al. (2025).[40]
  • Li et al. (2025) report the discovery of a new fish assemblage dominated by cartilaginous fishes from the Permian (Changhsingian) Dalong Formation (Sichuan, China), including a probable neoselachian which might represent the earliest record of a cartilaginous fish with holaulacorhize-like root vascularization.[41]
  • A study on the development and evolution of tenaculum and its tooth-like denticles in chimaeras, as indicated by their development during ontogeny in extant spotted ratfish and by anatomy of Carboniferous Helodus simplex, is published by Cohen, Coates & Fraser (2025), who interpret the denticles of the tenaculum as more likely to be true teeth than modified dermal denticles.[42]
  • Zhao et al. (2025) interpret Laffonia helvetica as a holocephalan egg capsule morphologically intermediate between Carboniferous Crookallia and Vetacapsula and extant chimaerid capsules.[43]
  • A well-preserved specimen of Chimaeropsis paradoxa, displaying soft parts, is described from the Tithonian strata in the Solnhofen area (Germany) by Duffin, Lauer & Lauer (2025).[44]
  • Duffin & Ward (2025) describe a quasi-complete but poorly preserved specimen of Elasmodectes cf. willetti from the Cenomanian strata in Morocco, and identify the first fossil of a member of the genus Elasmodectes (a tooth plate) from the Albian Gault Clay of Folkestone (Kent, United Kingdom.[45]
  • Popov & Rogov (2025) describe chimaeroid fossil material from the Coniacian strata from the Krasnoyarsk Krai (Russia), providing evidence of presence of Edaphodon sp. and Harriotta sp. in the polar latitudes of eastern Siberia during the Late Cretaceous.[46]
  • A study on the histology and growth of dental plates of Ischyodus dolloi is published by Cerda, Gouiric Cavalli & Reguero (2025).[47]
  • Gayford & Jambura (2025) review evidence of different drivers of diversification of elasmobranchs throughout their evolutionary history.[48]
  • The first dermal denticles of Listracanthus hystrix from Ireland are described from the Carboniferous Clare Shale Formation (County Clare, Republic of Ireland) by Doyle (2025).[49]
  • Greif et al. (2025) reconstruct feeding habits of Ctenacanthus concinnus, interpreting it as likely opportunistic feeder that used an array of feeding mechanisms.[50]
  • Vida, Kriwet & Martin (2025) revise the cartilaginous fish assemblage from the Rhaetian Contorta Beds of Bonenburg (Exter Formation; Germany), interpret Rhomphaiodon minor as a junior synonym of Nemacanthus monilifer, and reconstruct the food web of fishes from Bonenburg, providing evidence of presence of diverse mesopredators and of likely niche partitioning in cartilaginous fishes.[51]
  • Eltink et al. (2025) report the first discovery of fossil material of Priohybodus arambourgi from the Upper Jurassic Aliança Formation (Brazil), and study tooth morphology of members of the species and its variation.[52]
  • Valentin et al. (2025) describe new fossil material of hybodont sharks from the Campanian strata in France, including the first record of Parvodus from the Late Cretaceous.[53]
  • Staggl et al. (2025) study diversity dynamics of neoselachians throughout the Mesozoic, providing evidence that higher atmospheric CO2 concentrations had negative effect on neoselachian diversity.[54]
  • Evidence from the study of oxygen isotope composition of teeth of Cretoxyrhina mantelli, Cretalamna appendiculata, Scapanorhynchus texanus, Squalicorax kaupi, Squalicorax pristodontus and Ptychodus mortoni from the Upper Cretaceous strata from the Gulf Coastal Plain, interpreted as likely indicative of increased body temperature of P. mortoni and indicative of active heating and migration from warmer waters by C. mantelli, is presented by Comans, Tobin & Totten (2025)[55]
  • Benavides-Cabra et al. (2025) describe a new specimen of Protolamna ricaurtei from the Aptian Paja Formation (Colombia), representing the first Early Cretaceous lamniform specimen preserved with both teeth and vertebrae, and providing evidence of large overall body size of this shark, but with proportionally small teeth.[56]
  • Amadori et al. (2025) reconstruct the lower crushing plate of Ptychodus decurrens on the basis of new fossil material from the Upper Cretaceous strata in Croatia.[57]
  • Shimada et al. (2025) argue that Otodus megalodon likely had slenderer body than the great white shark, and estimate that it might have reached about 24.3 m in body length.[58]
  • McCormack et al. (2025) study the trophic ecology of marine vertebrates from the Miocene (Burdigalian) Upper Marine Molasse sediments (Germany), and report evidence indicating that members of the genus Otodus did not feed exclusively on high trophic level prey, as well as evidence indicating that most of the studied specimens of Carcharodon hastalis fed on a lower trophic level prey than extant great white shark.[59]
  • Godfrey et al. (2025) describe teeth of Carcharodon hastalis embedded in cetacean vertebrae from the Miocene Calvert Formation (Maryland, United States), confirming that the studied shark fed on marine mammals.[60]
  • A study on the evolution of members of Squaliformes is published by Marion, Condamine & Guinot (2025), who find evidence of multiple colonizations of the deep sea that coincided with marine transgressions and were likely facilitated by the evolution of bioluminescence.[61]
  • Greenfield (2025) reidentify the large rostrum and four fragmentary rostral denticles from the Dakhla Formation originally attributed to Onchopristis sp. by Capasso et al. (2024)[62] as Sclerorhynchoidei indet. and Sclerorhynchus cf. leptodon, respectively,[63] while Capasso et al. (2025) supported their original identification and stated that any taxonomic determination without direct examination is unacceptable.[64]
  • Collareta & Mollen (2025) identify fossil material of Nebriimimus wardi from the Pliocene strata from Guardamar del Segura (Spain), representing the first record of this species outside Italy.[65]
  • A study on the evolution of the shark body form is published by Gayford et al. (2025), who interpret their findings as indicating that ancestral shark were living in benthic environments, as well as indicative of four independent cases of transition of sharks to the pelagic zone and related adaptations of their body form, likely linked to increased habitat availability during the Jurassic and Cretaceous.[66]
  • Assemat, Adnet & Martin (2025) study the trophic ecology of Maastrichtian elasmobranchs from Morocco, and report evidence of similarities of the studied assemblage with modern trophic food webs, as well as evidence of consumption of tetrapods by Squalicorax pristodontus.[67]
  • Cañete-Cañete et al. (2025) revise the fossil record of cartilaginous fishes from Chile from the Late Cretaceous to the Eocene, finding no evidence of a significant turnover during the Cretaceous-Paleogene transition, and finding evidence of increase of diversity during the Eocene.[68]
  • Fossil material of diverse Miocene (Aquitanian) shark assemblage is described from the Khari Nadi Formation (Kachchh, India) by Chaskar et al. (2025).[69]
  • New elasmobranch fossil material is described from the Miocene strata of the Upper Marine Molasse from the Ursendorf and Rengetsweiler sites (Germany) by Höltke et al. (2025).[70]
  • A new assemblage of deep-marine elasmobranchs, including fossils of representatives of five different orders with a wide range of feeding behaviors, is described from the Miocene (Langhian) strata in Austria by Feichtinger et al. (2025).[71]
  • Evidence from the study of isolated teeth of living and fossil lamniform sharks, indicative of utility of geometric morphometrics for identification of isolated fossil teeth, is presented by Pagliuzzi et al. (2025).[72]

Ray-finned fishes

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Acronichthys[73]

Gen. et sp. nov

Liu et al.

Late Cretaceous (Maastrichtian)

Scollard Formation

Canada
( Alberta)

A member of Otophysi of uncertain affinities, the type genus of the new family Acronichthyidae. The type species is A. maccagnoi.

Alienagobius[74]

Gen. et sp. nov

Valid

Reichenbacher & Bannikov

Miocene (Serravallian)

Karpov Yar Locality

Moldova

A member of the family Oxudercidae. The type species is A. pygmaeus.

Ammutichthys[75]

Gen. et sp. nov

Valid

Calzoni, Giusberti & Carnevale

Eocene

Chiusole Formation

Italy

A member of Percomorphacea of uncertain affinities. The type species is A. loricatus.

Antarctichthys[76] Gen. et sp. nov Gallo et al. Late Cretaceous (Campanian) Snow Hill Island Formation Antarctica A member of the family Dercetidae. The type species is A. longipectoralis.

Apholidotus[77]

Gen. et sp. nov

Valid

Lund, Grogan & Jacob

Carboniferous (Serpukhovian)

Bear Gulch Limestone

United States
( Montana)

An early ray-finned fish. Genus includes new species A. ossuous.

Apholidotus ossuous

Archaeosiilik[78]

Gen. et sp. nov

Valid

Brinkman et al.

Late Cretaceous (Maastrichtian)

Prince Creek Formation

United States
( Alaska)

A member of the family Esocidae. The type species is A. gilmulli.

Argyropelecus iranicus[79]

Sp. nov

Valid

Ridolfi et al.

Eocene (Bartonian)

Pabdeh Formation

Iran

A species of Argyropelecus.

Argyropelecus zagrosensis[79]

Sp. nov

Valid

Ridolfi et al.

Eocene (Bartonian)

Pabdeh Formation

Iran

A species of Argyropelecus.

Armigatus simonettoi[80]

Sp. nov

Amalfitano et al.

Early Cretaceous (Hauterivian–Barremian)

Italy

Britosteus[81] Gen. et sp. nov Valid Martinelli et al. Late Cretaceous Adamantina Formation Brazil A gar. The type species is B. amarildoi. (Named in 2024; final article published in 2025)
Buapichthys[82] Gen. et sp. nov Valid Medina-Castañeda, Cantalice & Castañeda-Posadas Late Cretaceous (Turonian) Mexcala Formation Mexico A member of Crossognathiformes belonging to the group Pachyrhizodontoidei. The type species is B. gracilis. (Named in 2024; final article published in 2025)

Cacatualepis[83]

Gen. et comb. nov

Valid

Bean

Late Jurassic and Early Cretaceous

Australia

A member of the family Coccolepididae. The type species is "Coccolepis" australis Woodward (1895); genus also includes "Coccolepis" woodwardi Waldman (1971).

Cacatualepis woodwardi

Carlomonnius carnevalei[84]

Sp. nov

Valid

Reichenbacher, Bannikov & Erpenbeck

Eocene (Ypresian)

Monte Bolca

Italy

A member of the family Butidae.

Caturus enkopicaudalis[85]

Sp. nov

Valid

Ebert & López-Arbarello

Late Jurassic (Kimmeridgian and Tithonian)

Germany

Chanos chautus[86]

Sp. nov

Valid

Guadarrama & Cantalice

Paleocene (Danian)

Tenejapa-Lacandón Formation

Mexico

A relative of the milkfish.

Chiarachromis[87]

Gen. et sp. nov

Valid

Bellwood, Bannikov & Zorzin

Eocene

Monte Bolca

Italy

A damselfish. The type species is C. salazzarii.

Chilomycterus dzonotensis[88]

Sp. nov

Valid

Cantalice et al.

Neogene (Messinian/Zanclean)

Carrillo Puerto Formation

Mexico

A species of Chilomycterus.

Cryptograciles[74]

Gen. et 2 sp. nov

Valid

Reichenbacher & Bannikov

Miocene (Serravallian)

Karpov Yar Locality

Moldova

A member of the family Oxudercidae. The type species is C. conicus; genus also includes C. robustus.

Dibango[89]

Gen. et sp. nov

Valid

Davesne & Carnevale

Eocene

Monte Bolca

Italy

A member of Percomorpha of uncertain affinities. The type species is D. volans.

Eogorgon[75]

Gen. et sp. nov

Valid

Calzoni, Giusberti & Carnevale

Eocene

Chiusole Formation

Italy

A medusafish. The type species is E. bizzarinii.

Eomyctophum mainardii[75]

Sp. nov

Valid

Calzoni, Giusberti & Carnevale

Eocene

Chiusole Formation

Italy

A lanternfish.

Erebusia[75]

Gen. et sp. nov

Valid

Calzoni, Giusberti & Carnevale

Eocene

Chiusole Formation

Italy

A member of Percomorphacea of uncertain affinities. The type species is E. tenebrae.

Etelis bathypelagicus[90]

Sp. nov

Valid

Aguilera, De Gracia, Rodriguez & Buckup in Aguilera et al.

Miocene

Chagres Formation

Panama

A species of Etelis.

Ferruaspis[91] Gen. et sp. nov McCurry et al. Middle Miocene McGraths Flat Australia A member of Osmeriformes. The type species is F. brocksi

Gerpegezhus daniaoriundus[92]

Sp. nov

Valid

Schrøder & Carnevale

Eocene

Fur Formation

Denmark

A member of Syngnathoidei belonging to the superfamily Centriscoidea and the family Gerpegezhidae.

Gymnothorax pierreolivieri[93]

Sp. nov

Aguilera et al.

Miocene

Gatun Formation

Panama

A species of Gymnothorax.

Habroichthys bosi[94]

Sp. nov

Conedera et al.

Middle Triassic (Anisian)

Strelovec Formation

Slovenia

Habroichthys celarci[94]

Sp. nov

Conedera et al.

Middle Triassic (Anisian)

Strelovec Formation

Slovenia

Habroichthys dincae[94]

Sp. nov

Conedera et al.

Middle Triassic (Ladinian)

Sciliar Formation

Italy

Habroichthys flaviae[94]

Sp. nov

Conedera et al.

Middle Triassic (Ladinian)

Cunardo Formation

Italy

Habroichthys nietorum[94]

Sp. nov

Conedera et al.

Middle Triassic (Anisian)

Slovenia

Habroichthys veronikae[94]

Sp. nov

Conedera et al.

Middle Triassic (Anisian)

Strelovec Formation

Slovenia

Habroichthys zuitaensis[94]

Sp. nov

Conedera et al.

Middle Triassic (Ladinian)

Sciliar Formation

Italy

Iratusichthys[95]

Gen. et sp. nov

Valid

Schrøder & Carnevale

Early Eocene

Ølst Formation

Denmark

A probable member of the stem group of Lampriformes. The type species is I. ulrikii.

Kalops loganensis[96]

Sp. nov

Valid

Shen

Carboniferous (Pennsylvanian)

Staunton Formation

United States
( Indiana)

An early ray-finned fish.

Keasichthys[97]

Gen. et sp. nov

Murray & Champagne

Oligocene

Keasey Formation

United States
( Oregon)

A flatfish. The type species is K. oregonensis.

Krampusichthys[75]

Gen. et sp. nov

Valid

Calzoni, Giusberti & Carnevale

Eocene

Chiusole Formation

Italy

A member of the family Gempylidae. The type species is K. tridentinus.

Landanaelops[98] Gen. et sp. nov Valid Taverne & Smith Paleocene (Selandian) Landana Formation Angola A member of the family Elopidae. The type species is L. gunnelli. (Named in 2024; final article published in 2025)

Laurinichthys[75]

Gen. et sp. nov

Valid

Calzoni, Giusberti & Carnevale

Eocene

Chiusole Formation

Italy

A member of the family Gempylidae. The type species is L. boschelei.

Moldavigobius gloriae[74]

Sp. nov

Valid

Reichenbacher & Bannikov

Miocene (Serravallian)

Karpov Yar Locality

Moldova

A member of the family Gobiidae.

Moythomasia lebedevi[99]

Sp. nov

Valid

Plax, Bakaev & Naugolnykh

Devonian (Givetian)

Stolin Beds

Belarus

Nunikuluk[78]

Gen. et sp. nov

Valid

Brinkman et al.

Late Cretaceous (Maastrichtian)

Prince Creek Formation

United States
( Alaska)

A member of the family Esocidae. The type species is N. gracilis.

Oligobothus polonicus[100]

Sp. nov

Kovalchuk et al.

Oligocene (Rupelian)

Menilite Formation

Poland

A member of the family Bothidae.

Oligosolea[100]

Gen. et sp. nov

Kovalchuk et al.

Oligocene (Rupelian)

Menilite Formation

Poland

A member of the family Soleidae. Genus includes new species O. carpathica.

Paralates simpsoni[101]

Sp. nov

Valid

Bauer & Reichenbacher in Bauer et al.

Eocene (Priabonian)

United Kingdom

A stem-freshwater sleeper.

Phacodus arghiusii[102]

Sp. nov

Trif & Szabó

Eocene

Romania

A member of Pycnodontiformes.

Phacodus scrobiculatus[102]

Comb. nov

(Reuss)

Cretaceous

Czech Republic

A member of Pycnodontiformes; moved from "Pycnodus" scrobiculatus Reuss (1844).

Propercarina occidentalis[103]

Sp. nov

Micklich & Přikryl

Oligocene

Germany

Saurichthys justitias[104]

Sp. nov

Stack et al.

Late Triassic (?Norian)

Dockum Group

United States
( Texas)

Scopeloides bellator[75]

Sp. nov

Valid

Calzoni, Giusberti & Carnevale

Eocene

Chiusole Formation

Italy

A member of the family Gonostomatidae.

Scopeloides violator[75]

Sp. nov

Valid

Calzoni, Giusberti & Carnevale

Eocene

Chiusole Formation

Italy

A member of the family Gonostomatidae.

Simocormus seyboldi[105]

Sp. nov

Maxwell et al.

Late Jurassic (Kimmeridgian)

Nusplingen Limestone

Germany

A member of the family Pachycormidae.

Sivulliusalmo[78]

Gen. et sp. nov

Valid

Brinkman et al.

Late Cretaceous (Maastrichtian)

Prince Creek Formation

United States
( Alaska)

A member of the family Salmonidae. The type species is S. alaskensis.

Solterichthys[75]

Gen. et sp. nov

Valid

Calzoni, Giusberti & Carnevale

Eocene

Chiusole Formation

Italy

A member of the family Phosichthyidae. The type species is S. macrognathus.

Sphyragnathus[106]

Gen. et sp. nov

Wilson, Mansky & Anderson

Carboniferous (Tournaisian)

Horton Bluff Formation

Canada
( Nova Scotia)

An early ray-finned fish. The type species is S. tyche.

Tahnaichthys[107] Gen. et sp. nov Valid Pacheco-Ordaz, Mejía & Alvarado-Ortega Early Cretaceous (Albian) Tlayúa Formation Mexico A member of the family Pycnodontidae. The type species is T. magnuserrata. (Named in 2024; final article published in 2025)

Tenupiscis[108]

Gen. et sp. nov

Valid

Stack, Gottfried & Stocker

Permian (Kungurian)

Minnekahta Formation

United States
( South Dakota)

An early ray-finned fish. The type species is T. dakotaensis.

Thrissops ettlingensis[109]

Sp. nov

Valid

Ebert

Late Jurassic (Tithonian)

Germany

Thrissops kimmeridgensis[109]

Sp. nov

Valid

Ebert

Late Jurassic (Kimmeridgian)

Kimmeridge Clay

United Kingdom

Wudelenia[75]

Gen. et sp. nov

Valid

Calzoni, Giusberti & Carnevale

Eocene

Chiusole Formation

Italy

A member of the family Gempylidae. The type species is W. diabolica.

Otolith taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Acanthocepola adamantis[110]

Sp. nov

Valid

Schwarzhans & Cotton

Oligocene

Pande Formation

Tanzania

A species of Acanthocepola.

Archaeotolithus solidus[111]

Sp. nov

Pindakiewicz et al.

Jurassic

Poland

"Blennius" ignotus[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Poland

A combtooth blenny of uncertain generic placement.

Bregmaceros tanzaniensis[110]

Sp. nov

Valid

Schwarzhans & Cotton

Oligocene

Pande Formation

Tanzania

A codlet.

Carapus lentus[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Austria
Poland

A species of Carapus.

Cataetyx lacrimatus[113]

Sp. nov

Valid

Schwarzhans

Miocene (Serravallian)

Austria

A species of Cataetyx.

Chaetodon europaeus[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Poland

A species of Chaetodon.

Chiloconger aflorens[114]

Sp. nov

Valid

Lin & O'Dea

Miocene

Chagres Formation

Panama

A species of Chiloconger.

Coelorinchus adventicius[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Czech Republic

A species of Coelorinchus.

Conger kovalchuki[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Poland
Austria?

A species of Conger.

Cubiceps huimanni[113]

Sp. nov

Valid

Schwarzhans

Miocene (Serravallian)

Austria

A species of Cubiceps.

Dasyscopelus inopinatus[114]

Sp. nov

Valid

Lin & O'Dea

Miocene

Chagres Formation

Panama

A species of Dasyscopelus.

Gadella vera[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Poland

A species of Gadella.

Globogobius praeglobosus[113]

Sp. nov

Valid

Schwarzhans

Miocene (Serravallian)

Austria

A goby.

Gobius brocchus[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Austria

A species of Gobius.

Gobius inops[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Austria

A species of Gobius.

Gymnoscopelus septentrionalis[113]

Sp. nov

Valid

Schwarzhans

Miocene (Serravallian)

Austria

A species of Gymnoscopelus.

Hoplostethus boyae[114]

Sp. nov

Valid

Lin & O'Dea

Miocene

Chagres Formation

Panama

A species of Hoplostethus.

Hoplunnis schultzi[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Austria

A species of Hoplunnis.

Juraelops[111]

Gen. et sp. nov

Pindakiewicz et al.

Jurassic

United Kingdom

Genus includes new species J. prodigiosum.

Krefftichthys walbersdorfensis[113]

Sp. nov

Valid

Schwarzhans

Miocene (Serravallian)

Austria

A species of Krefftichthys.

Lesueurigobius aetomatus[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Austria

A species of Lesueurigobius.

Lophiodes pitassyae[113]

Sp. nov

Valid

Schwarzhans

Miocene (Serravallian)

Austria

A species of Lophiodes.

Malacanthus bratishkoi[113]

Sp. nov

Valid

Schwarzhans

Miocene (Serravallian)

Austria

A species of Malacanthus.

Malakichthys schwarzhansi[114]

Sp. nov

Valid

Lin & O'Dea

Miocene

Chagres Formation

Panama

A species of Malakichthys.

Neomerinthe pinguis[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Czech Republic

A species of Neomerinthe.

Odondebuenia austriaca[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Austria

A relative of the Coralline goby.

Ortugobius pandeanus[110]

Sp. nov

Valid

Schwarzhans & Cotton

Oligocene

Pande Formation

Tanzania

A member of the family Gobiidae.

Palaspius[113]

Gen. et sp. nov

Valid

Schwarzhans

Miocene (Serravallian)

Austria

A member of the family Leuciscidae. The type species is P. extremus.

Palealbula crenulata[111]

Sp. nov

Pindakiewicz et al.

Jurassic

United Kingdom

Palealbula ventai[111]

Sp. nov

Pindakiewicz et al.

Jurassic

Lithuania

Panturichthys tersus[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Austria

A species of Panturichthys.

Paraplesiopoma[115]

Gen. et sp. et comb. nov

Valid

Trif & Schwarzhans in Trif et al.

Late Cretaceous (Santonian and Campanian)

Bozeș Formation

Romania
Spain

A possible basal member of Percomorpha. The type species is P. transylvanica; genus also includes "genus Acropomatidarum" bagassianus Nolf (2003) and "genus Haemulidarum" santonianus Nolf (2003).

Physiculus pinnatus[113]

Sp. nov

Valid

Schwarzhans

Miocene (Serravallian)

Austria

A species of Physiculus.

Prionotus friedmani[113]

Sp. nov

Valid

Schwarzhans

Miocene (Serravallian)

Austria

A species of Prionotus.

Protalbula dorsetensis[111]

Sp. nov

Pindakiewicz et al.

Jurassic

United Kingdom

Protanago africanus[110]

Sp. nov

Valid

Schwarzhans & Cotton

Oligocene

Pande Formation

Tanzania

A member of the family Congridae.

Pseudonansenia[116]

Gen. et sp. nov

Valid

Schrøder, Carnevale & Schwarzhans

Paleocene (Selandian)

Lellinge Greensand

Denmark

A member of Argentiniformes. The type species is P. hauniensis.

Pseudopampus[112]

Gen. et comb. nov

Valid

Schwarzhans & Radwańska

Miocene

Austria
Czech Republic
Germany

A member of the family Stromateidae. The type species is "Otolithus (Cantharus?)" tietzei Schubert (1906).

Pteralbula jurassica[111]

Sp. nov

Pindakiewicz et al.

Jurassic

United Kingdom

Pterothrissus solidus[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Czech Republic

A relative of the Japanese gissu.

Sargocentron viennensis[113]

Sp. nov

Valid

Schwarzhans

Miocene (Serravallian)

Austria

A species of Sargocentron.

Scorpaena cibaria[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Poland

A species of Scorpaena.

Serranus lautus[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Austria

A species of Serranus.

"Serranus" plasmaticus[110]

Sp. nov

Valid

Schwarzhans & Cotton

Oligocene

Pande Formation

Tanzania

A member of the family Serranidae.

Vanneaugobius voeslauensis[112]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene

Austria

A species of Vanneaugobius.

Vodyanoi[111]

Gen. et 2 sp. nov

Pindakiewicz et al.

Middle Jurassic

Poland

A teleost of uncertain affinities. The type species is V. schwarzhansi; genus also includes V. stringeri.

Ray-finned fish research

[edit]
  • A study on the development of teeth of a stem ray-finned fish specimen from the Devonian Gneudna Formation (Australia), providing evidence of similarities with the organization of lungfish tooth plates, is published by Chen (2025).[117]
  • Igielman et al. (2025) study the anatomy of lower jaws of Devonian ray-finned fishes, report evidence of overall similarity in similarity in gross shape and composition, but also report evidence of differences that might be related to a previously unrecognized functional diversity.[118]
  • Wilson, Mansky & Anderson (2025) describe occipital ossifications of two ray-finned fishes from the Tournaisian Horton Bluff Formation (Nova Scotia, Canada), and report similarities of one of the studied specimens to early-diverging Devonian ray-finned fishes, as well as similarities of the other specimen to later, Carboniferous taxa, providing new information on diversity of ray-finned fishes from the Horton Bluff Formation.[119]
  • Giles, Kolmann & Friedman (2025) describe a specimen of Platysomus parvulus from the Carboniferous Pennine Middle Coal Measures Formation (Staffordshire, England, United Kingdom) preserving evidence of presence of enlarged basibranchial tooth plates opposing an upper tooth field including small, pointed teeth on the surface of the vomer and longitudinal bands of teeth on the entopterygoids, representing the earliest record of a tongue-bite mechanism in a ray-finned fish reported to date.[120]
  • A study on the composition of the ray-finned fish assemblages from Permian localities in the Nizhny Novgorod Oblast (Russia) is published by Karaseva & Bakaev (2025).[121]
  • Redescription of Palaeoniscum delessei is published by Gonçalves & Luccisano (2025),[122] who synonymise this species to Aeduella blainvillei.
  • Redescription and a study on the phylogenetic affinities of Pteronisculus gunnari is published by Cavicchini et al. (2025).[123]
  • Cooper et al. (2025) study the skull roof anatomy of Gyrosteus mirabilis, and interpret both G. mirabilis and Strongylosteus hindenburgi as species distinct from Chondrosteus acipenseroides.[124]
  • Miyata et al. (2025) describe fossil material of a sturgeon from the Maastrichtian Hakobuchi Formation (Japan), representing the first record of a sturgeon from the Upper Cretaceous strata in East Asia.[125]
  • Capasso & Witzmann (2025) identify pycnodontomorph specimens with supernumerary rays of dorsal and anal fins, and interpret the studied anomalies as likely atavisms and as evidence supporting the interpretation of pycnodontomorph as basal neopterygians.[126]
  • Fossil material of Eomesodon sp., representing the oldest record of pycnodonts from Gondwana reported to date, is described from the Middle Jurassic (Bajocian) Jaisalmer Formation (India) by Ghosh, Kumar & Swami (2025).[127]
  • Pacheco-Ordaz, Reyes-López & Alvarado-Ortega (2025) identify a specimen of Paranursallia gutturosa from the Turonian strata from the San José de Gracia Quarry (Mexico), assign further nursalliine pycnodontid specimens from the Agua Nueva Formation to the same species, and discard report of the presence of Nursallia tethyensis in the Turonian strata of the Huehuetla Quarry.[128]
  • Fossil material of cf. Coelodus sp., representing the first vertebrate material reported from the Santonian Jákó Marl Formation (Hungary), is described by Szabó, Haas & Cawley (2025).[129]
  • Brinkman et al. (2025) study the composition of the ray-finned fish assemblage from the Turonian Bissekty Formation (Uzbekistan), reporting evidence of presence of basal neopterygians and teleosts (mostly members of early-diverging lineages, but also a characiform and an acanthomorph) and evidence of differences in composition between the studied assemblage and earlier Cenomanian assemblages from Laurasia, and link the reported differences to climate changes and intercontinental dispersal events.[130]
  • Gardner, Brinkman & Murray (2025) identify the holotype of Arotus hieroglyphus as a scale of a holostean fish.[131]
  • A study on the anatomy and affinities of "Semionotus" manselii is published by Ebert & Etches (2025), who transfer this species to the genus Brachyichthys.[132]
  • Ganoid scales probably representing the oldest fossil material of Lepisosteus reported from Southern Hemisphere are described from the Albian–Cenomanian Açu Formation (Brazil) by Costa et al. (2025).[133]
  • Gar remains representing the first record of this group from the Late Cretaceous of Japan are described from the Turonian Mifune Group by Ikegami, Yabumoto & Brito (2025).[134]
  • A study on the scale histology of Pachycormus is published by Maxwell & Cooper (2025).[135]
  • Kanarkina, Zverkov & Popov (2025) identify fin fragments of members of the genus Bonnerichthys from the Campanian strata of the Rybushka Formation (Saratov Oblast, Russia), representing the first record of fossils of this genus outside the United States.[136]
  • Ebert & Kölbl-Ebert (2025) report the discovery of specimens of Tharsis from the Upper Jurassic strata of the Plattenkalk basins of Eichstätt or Solnhofen Basin (Germany) found with belemnites lodged in their mouth and gill apparatus, and interpret the studied specimens as sucking remnants of belemnite soft tissue of algal or bacterial overgrowth and accidentally sucking belemnites into their mouth, resulting in suffocation.[137]
  • Evidence of variation of morphology of the gastrointestinal tract of teleosts from the Barremian La Huérguina Formation (Spain) is presented by San Román, Marugán Lobón & Martín-Abad (2025).[138]
  • Brinkman et al. (2025) compare the composition of teleost assemblages from the Maastrichtian Hell Creek Formation and from the Paleocene Fort Union Formation (Montana, United States) and Ravenscrag Formation (Saskatchewan, Canada), and find that the Cretaceous–Paleogene extinction event mainly affected taxa that were already rare in the Maastrichtian, but also find evidence of reduced taxonomic richness of teleosts during the early Paleocene.[139]
  • Serafini et al. (2025) identify a plethodid rostrum from the Upper Cretaceous (Campanian-Maastrichtian) strata from northern Italy, preservign evidence of presence of cranial and dental traits convergent with those of extant billfishes.[140]
  • A study on fossil melanin in an eye of a probable specimen of Dastilbe crandalli from the Crato Formation (Brazil), providing evidence of high density but low diversity of melanosomes from the retinal pigment epithelium which might be indicative of limited visual capabilities of the studied fish, is published by Prado et al. (2025).[141]
  • Redescription and a study on the affinities of Plesioschizothorax macrocephalus is published by Yang et al. (2025).[142]
  • Přikryl et al. (2025) describe fossil material of Luciobarbus graellsii from the Pliocene strata from the Camp dels Ninots site (Spain), and interpret the studied fossils as indicating that the species was able to adapt to environmental changes from the warmest period of the Pliocene to the coldest period of the Pleistocene.[143]
  • Murray, Brinkman & Krause (2025) identify fossil material of at least three acanthomorph (probably percomorph) taxa from the Maastrichtian strata in the Mahajanga Basin (Madagascar), interpreted as likely evidence of a single invasion of Madagascan fresh waters during the Cretaceous.[144]
  • Carnevale & Bannikov (2025) redescribe Protorhamphosus parvulus, and confirm its placement within Syngnathoidei and are unable to determine its exact phylogenetic affinities within this group.[145]
  • Schwarzhans & Bannikov (2025) report the first discovery of a specimen of Pinichthys shirvanensis from the Miocene strata of the North Shirvanskaya Formation (Krasnodar Krai, Russia) preserved with an otolith, and transfer the otolith-based taxon "Stromateus" steurbauti Schwarzhans (1994) to the genus Pinichthys.[146]
  • Revision of Oligocene palaeorhynchids from Romania is published by Grădianu, Monsch & Baciu (2025).[147]
  • Chanet (2025) revises the anatomy and affinities of the Miocene scaldfish Arnoglossus sauvagei.[148]
  • Redescription of Zignoichthys oblongus, based on data from new fossil material from the Pesciara site of the Bolca locality (Italy), is published by Ridolfi et al. (2025).[149]
  • Collareta et al. (2025) report the discovery of fused dentaries of an ocean sunfish from the Lower Pliocene strata of the Siena-Radicofani Basin (Italy), representing the first finding of fossil material of a member of this group in post-Miocene strata outside North America.[150]
  • Přikryl et al. (2025) report the presence of fossil material of an indeterminate goby and members of the genera Herklotsichthys and Ophisternon in the Pleistocene Laguna Formation (Philippines).[151]
  • Dalla Vecchia et al. (2025) report the discovery of a new assemblage of Late Cretaceous (possibly Campanian-Maastrichtian) fishes from the Friuli Carbonate Platform (Italy), dominated by pycnodontiforms and basal non-acanthomorph teleosts.[152]
  • Dubikovska et al. (2025) study the composition of the Miocene fish assemblage from the Mykolaiv Beds (Ukraine), and report the first discovery of fossil material of Acanthurus haueri, Oligodiodon sp. and indeterminate diodontids and tetraodontiforms of uncertain familiar placement from the Forecarpathian Basin.[153]
  • Evidence of changes of diversity of ray-finned fishes from the south of Eastern Europe (Moldova, Russia and Ukraine) from the late Miocene to the late Pleistocene is presented by Barkaszi & Kovalchuk (2025).[154]
  • Brinkman et al (2025) document the paleoichthyofauna of the early Maastrichtian-aged Prince Creek Formation of Alaska, including the descriptions of new genera (Nunikuluk, Archaeosiilik, Sivulliusalmo), the first documentation of several previously-described taxa (Oldmanesox, Horseshoeichthys) within the formation, and the oldest known fossil record of Cypriniformes.[78]
  • Melendez-Vazquez et al. (2025) link the evolution of endothermy in ray-finned fishes with evolution of large body size, adaptations to distinct swimming modes, and interactions with cetaceans during the Eocene-Miocene.[155]
  • A study on changes of diversity of bony fishes in Chile from the Neogene to the present is published by Oyanadel-Urbina et al. (2025).[156]

Lobe-finned fishes

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Onychodus mikijuk[157]

Sp. nov

Goodchild et al.

Devonian (Frasnian)

Nordstrand Point Formation

Canada
( Nunavut)

Sagenodus hibernicus[158]

Sp. nov

Valid

Smithson et al.

Carboniferous

Ireland

A lungfish.

Lobe-finned fish research

[edit]

General research

[edit]
  • Haridy et al. (2025) identify purported early vertebrate Anatolepis as an arthropod, interpret its purported dentine tubules as sensory structures similar to those present in Cambrian aglaspidids and modern arthropods, and determine the oldest known fossil evidence of vertebrate dental tissues to be middle Ordovician in age.[173]
  • Troyer et al. (2025) study the evolution of lower jaws in Silurian and Devonian bony fishes, reporting evidence of high rates of diversification in lungfishes and coelacanths, and evidence of slow rates of evolution and low functional diversity of jaws in ray-finned fishes and tetrapodomorphs.[174]
  • Llewelyn et al. (2025) compare fish trait diversity in Devonian communities from the Gogo Formation, Canowindra fish beds in the Mandagery Formation (Australia) and Miguasha (Escuminac Formation; Canada) and in six modern fish communities, and find evidence indicating that Devonian communities were less functionally rich than their modern analogues, evidence of greater trait differentiation and lower functional redundancy among fish in Devonian communities compared to modern ones, and evidence that the Canowindra community was distinct from other Devonian communities as well as from modern fish communities.[175]
  • Ivanov & Hu (2025) describe fossil material of new fish assemblages (including diverse cartilaginous fishes) from the Carboniferous–lower Permian strata of the Naqing, Narao, and Shanglong deep-water sections (Guizhou, China) and from the Carboniferous (Serpukhovian–Bashkirian) strata of the Sholaksay section (Kazakhstan).[176]
  • Gonçalves et al. (2025) report the discovery of a new ichthyological assemblage from the Carboniferous (Gzhelian) Bourran Formation (Aveyron, France), comprising specimens of Orthacanthus sp., cf. Progyrolepis, Acanthodidae indet., Aeduella sp. and Decazella vetteri.[177]
  • Andrews, Shirley & Figueroa (2025) report the discovery of a new, diverse fish assemblage from the Carboniferous (Mississippian) Marshall Sandstone (Michigan, United States).[178]
  • Hodnett et al. (2025) study the composition of Permian fish assemblages from the Phosphoria, Park City and Shedhorn formations (Wyoming, United States), providing evidence of similarities with the assemblage from the Kaibab Formation in Arizona.[179]
  • Swimming trails of fishes with diverse morphologies or swimming behaviors are described from the Permian Salagou Formation (France) by Moreau et al. (2025).[180]
  • A study on the trophic relationships of fishes from the Romualdo Formation (Brazil), as indicated by mercury concentrations in their fossil remains, is published by Antonietto et al. (2025).[181]
  • Pokorný et al. (2025) describe trace fossils produced during death struggle of fishes from the Upper Cretaceous marine sediments in Lebanon, and name new ichnotaxa Pinnichnus haqilensis and P. emmae.[182]
  • Evidence from the study of the fossil record of fishes from Austria, indicative of increase of elasmobranch abundance and decrease of ray-finned fish density in the Tethys Ocean in the aftermath of the Cretaceous–Paleogene extinction event, is presented by Feichtinger et al. (2025).[183]
  • Deville de Periere et al. (2025) report the discovery of a diverse assemblage of marine fishes from the Eocene Dammam Formation (Saudi Arabia) .[184]
  • Sambou, Diaw & Adnet (2025) report the Discovery of a new marine fish assemblage from the Miocene–Pliocene deposits of the Saloum Formation (Senegal).[185]
  • Pallacks et al. (2025) study the fossil record of fish otoliths from the central western Aegean Sea, and report evidence indicating that a period of low oxygenation of mid-depth waters between 10,000 and 7,000 years ago was associated with near absence of mesopelagic fish.[186]

References

[edit]
  1. ^ Lin, X.; Zan, C.; Gai, Z.; Zhu, M. (2025). "Deanaspis, a new genus of Galeaspida (jawless stem Gnathostomata) from the Silurian of Jiangxi, China, and its evolutionary implications". Journal of Systematic Palaeontology. 23 (1). 2460479. Bibcode:2025JSPal..2360479L. doi:10.1080/14772019.2025.2460479.
  2. ^ a b Burrow, C. J.; Turner, S. (2025). "Vertebrate micro-remains with new thelodont and acanthodian taxa from the Devonian Parke Siltstone of the Amadeus Basin, Northern Territory, Australia". Alcheringa: An Australasian Journal of Palaeontology: 1–19. doi:10.1080/03115518.2025.2552684.
  3. ^ Märss, T. (2025). "On the Silurian and lowermost Devonian vertebrates of the Ufa Amphitheatre, the Central Urals, with emphasis on agnathans and correlations with the East Baltic". Estonian Journal of Earth Sciences. 74 (2): 96–119. Bibcode:2025EsJES..74...96M. doi:10.3176/earth.2025.07.
  4. ^ Sanchez-Sanchez, V.; Sanisidro, O.; Ferrón, H. G. (2025). "Functional aspects of the headshield processes in ostracoderms". Paleobiology. 51 (2): 310–322. Bibcode:2025Pbio...51..310S. doi:10.1017/pab.2025.5.
  5. ^ Randle, E.; Keating, J. N.; Sansom, R. S. (2025). "A phylogeny for Heterostraci (stem-gnathostomes)". Papers in Palaeontology. 11 (5) e70030. doi:10.1002/spp2.70030.
  6. ^ Schnetz, L.; Lanzetti, A.; Jones, A. S.; Dearden, R. P.; Lautenschlager, S.; Giles, S.; Johanson, Z.; Sansom, I. J. (2025). "From head to tail: 3D imaging the whole-body morphology of the stem gnathostome Anglaspis heintzi". Journal of Vertebrate Paleontology. 44 (5). e2476441. doi:10.1080/02724634.2025.2476441.
  7. ^ Miyashita, T.; Janvier, P.; Tietjen, K.; Berenguer, F.; Schöder, S.; Marone, F.; Gueriau, P.; Coates, M. I. (2025). "Novel assembly of a head–trunk interface in the sister group of jawed vertebrates". Nature. 645 (8081): 686–691. Bibcode:2025Natur.645..686M. doi:10.1038/s41586-025-09329-9. PMID 40770091.
  8. ^ Newman, M. J.; Plax, D. P. (2025). "A new articulated Upper Devonian (upper Famennian) groenlandaspidid fish (Arthrodira) from Belarus". Journal of Vertebrate Paleontology. 45 (1) e2529916. doi:10.1080/02724634.2025.2529916.
  9. ^ Xian, Z.; Pan, Z.; Wang, J.; Jia, L.; Zhao, Y.; Luo, Y.; Zhu, M. (2025). "A New Antiarch, Bothriolepis zhujiangyuanensis sp. nov., from the Eifelian (Middle Devonian) of Qujing, Yunnan, SW China". Acta Geologica Sinica (English Edition). 99 (1): 1–14. Bibcode:2025AcGlS..99....1X. doi:10.1111/1755-6724.15269.
  10. ^ Jobbins, M.; Moysiuk, J.; Durkin, P.; Brink, K. (2025). "Redescription of a Middle Devonian placoderm from Manitoba and comments on the polyphyly of Eastmanosteus (Arthrodira: Eubrachythoraci)". Journal of Systematic Palaeontology. 23 (1). 2511879. Bibcode:2025JSPal..2311879J. doi:10.1080/14772019.2025.2511879.
  11. ^ Mark-Kurik, E.; Newman, M. J.; den Blaauwen, J. L.; Jones, R. (2025). "A new species of the antiarch Microbrachius from the Middle Devonian (Givetian) of Estonia". Palaeontologia Electronica. 28 (2) 28.2.a35. doi:10.26879/1525.
  12. ^ Olive, S.; Kotoulas, I.; Goujet, D.; Donoghue, P. C. J.; Marone, F.; Rücklin, M. (2025). "A new 'acanthothoracid' placoderm from the Arctic Canada (Early Devonian) and its bearing on the evolution of jaws and teeth". Royal Society Open Science. 12 (9) 250837. Bibcode:2025RSOS...1250837O. doi:10.1098/rsos.250837. PMC 12404816. PMID 40904996.
  13. ^ Luo, Y.; Pan, Z.; Zhu, M. (2025). "A new tubalepid fish (Antiarcha, Placodermi) from the Middle Devonian of Huize, Yunnan, China". Swiss Journal of Palaeontology. 144 11. 11. doi:10.1186/s13358-025-00349-6.
  14. ^ Babcock, L. E. (2025). "Type Crania of the Devonian Placoderm Macropetalichthys from North America: Resolving Key Nomenclatural and Stratigraphic Conundrums". Fishes. 10 (7) 309. Bibcode:2025Fishe..10..309B. doi:10.3390/fishes10070309.
  15. ^ Pears, J. B.; Johanson, Z.; Boisvert, C. A.; Trinajstic, K. M. (2025). "Reconstructing the paired fin skeletons and musculature in arthrodires from the Devonian (Frasnian) Gogo Formation, Western Australia: implications of arthrodire appendicular anatomy for the serial homology of vertebrate limbs". Journal of Vertebrate Paleontology. 44 (6). e2486071. doi:10.1080/02724634.2025.2486071.
  16. ^ Xue, Q.; Wang, J.; Zhu, M.; Zhu, Y. (2025). "A reappraisal of the morphology and systematics of Extuaspis megista, a brachythoracid arthrodire from the Early Devonian of Yunnan, China". Journal of Systematic Palaeontology. 23 (1). 2455751. Bibcode:2025JSPal..2355751X. doi:10.1080/14772019.2025.2455751.
  17. ^ Trinajstic, K.; Johanson, Z.; Burrow, C.; Smith, M. M.; Long, J.; Clement, A.; Choo, B.; Maksimenko, A.; Dupret, V. (2025). "New specimens of the arthrodire Bullerichthys fascidens Dennis and Miles 1980 show incipient site-specific osteichthyan-like tooth addition and resorption". Swiss Journal of Palaeontology. 144 (1) 59. Bibcode:2025SwJP..144...59T. doi:10.1186/s13358-025-00405-1.
  18. ^ a b c d Newman, M.; Plax, D. P. (2025). "Late Devonian (Famennian) acanthodians (Acanthodii) from Belarus and their correlation elsewhere in Laurasia". New Mexico Museum of Natural History and Science Bulletin. 100: 153–166.
  19. ^ Gess, Robert W.; Burrow, Carole J. (2025). "Acanthodian fauna of the Upper Devonian Waterloo Farm Lagerstätte, South Africa". Journal of Vertebrate Paleontology. 45 (1) e2526538. doi:10.1080/02724634.2025.2526538. ISSN 0272-4634.
  20. ^ a b c d Duffin, C. J.; Batchelor, T. J. (2025). "New Neoselachian (Chondrichthyes, Elasmobranchii) teeth from the Lower Greensand Group (Early Cretaceous) of southern England". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 314 (1): 1–27. Bibcode:2025NJGPA.314....1D. doi:10.1127/njgpa/2025/1239.
  21. ^ Türtscher, Julia; Jambura, Patrick L.; Spindler, Frederik; Kriwet, Jürgen (2025-01-23). "Insights into stem Batomorphii: A new holomorphic ray (Chondrichthyes, Elasmobranchii) from the upper Jurassic of Germany". PLOS ONE. 20 (1) e0310174. Bibcode:2025PLoSO..2010174T. doi:10.1371/journal.pone.0310174. ISSN 1932-6203. PMC 11756912. PMID 39847754.
  22. ^ Villalobos-Segura, E.; Amadori, M.; Stumpf, S.; Jambura, P. L.; Begat, A.; Lopez-Romero, F. A.; Schweigert, G.; Maxwell, E. E.; Kriwet, J. (2025). "Articulated specimens provide new insights into the iconic Mesozoic shark genus Sphenodus". Journal of Systematic Palaeontology. 23 (1). 2507014. Bibcode:2025JSPal..2307014V. doi:10.1080/14772019.2025.2507014. PMC 7617882. PMID 40636025.
  23. ^ Duffin, C. J.; Lauer, B.; Lauer, R. (2025). "New Janassid Petalodontiform (Chondrichthyes) teeth from the Late Carboniferous of Kansas, USA". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 313 (2): 215–232. Bibcode:2025NJGPA.313..215D. doi:10.1127/njgpa/2025/1231.
  24. ^ Ota, A.; Nishimura, T.; Kobayashi, Y.; Moriki, K. (2025). "Callorhinchus orientalis sp. nov., a new callorhinchid from the Upper Cretaceous Hakobuchi Formation, Yezo Group, Hokkaido, Japan". Paleontological Research. 29 (1): 54–63. Bibcode:2025PalRe..29...54O. doi:10.2517/prpsj.240013.
  25. ^ a b Feichtinger, I.; Beaury, B.; Ćorić, S.; Straube, N.; Harzhauser, M.; Kranner, M.; Auer, G.; Guinot, G.; Pollerspöck, J. (2025). "A new deep-marine elasmobranch fauna from the Late Cretaceous of Bergen (Bavaria, Germany) dominated by squaliform sharks". PalZ. 99 (1): 71–93. Bibcode:2025PalZ...99...71F. doi:10.1007/s12542-024-00713-w.
  26. ^ Hodnett, J.-P. M.; Egli, H. C.; Toomey, R.; Olson, R.; Tolleson, K.; Boldon, R.; Tweet, J. S.; Santucci, V. L. (2025). "Obruchevodid petalodonts (Chondrichthyes, Petalodontiformes, Obruchevodidae) from the Middle Mississippian (Viséan) Joppa Member of the Ste. Genevieve Formation at Mammoth Cave National Park, Kentucky U.S.A.". Journal of Paleontology. 98 (6): 1087–1097. doi:10.1017/jpa.2024.40.
  27. ^ a b Greenfield, T. (2025). "Heckelodes and Coquandon nom. nov., replacement names for Galeodes Heckel, 1854 and Orthodon Coquand, 1859 (Chondrichthyes, ?Galeomorphii)". Zootaxa. 5696 (2): 298–300. doi:10.11646/zootaxa.5696.2.10.
  28. ^ Brito, P. M.; Veiga, I. M.; Dutheil, D. B.; Bergqvist, L. P. (2025). "First occurrence of Distobatus Werner, 1989 (Elasmobranchii: Hybodontiformes) in the middle Cretaceous (Albian–Cenomanian) of Brazil: Taxonomic and biogeographical implications". Cretaceous Research. 171 106119. 106119. Bibcode:2025CrRes.17106119B. doi:10.1016/j.cretres.2025.106119.
  29. ^ Trikolidi, F. A. (2025). "The First Finds of Teeth and Placoid Scales of Orectolobids (Chondrichthyes, Orectolobiformes) in the Berriasian of Crimea". Paleontological Journal. 58 (4 supplement): S425 – S433. doi:10.1134/S0031030124601774.
  30. ^ a b c Saugen, S. M.; Roberts, A. J.; Engelschiøn, V. S.; Hurum, J. H. (2025). "A new assemblage of Lower Triassic neoselachians (Chondrichthyes) from the Grippia Bonebed of Spitsbergen, Norway". Journal of Vertebrate Paleontology. 44 (3). e2426544. doi:10.1080/02724634.2024.2426544.
  31. ^ a b c d e Cicimurri, D. J.; Ebersole, J. A.; Stringer, G. L.; Starnes, J. E.; Phillips, G. E. (2025). "Late Oligocene fishes (Chondrichthyes and Osteichthyes) from the Catahoula Formation in Wayne County, Mississippi, USA". European Journal of Taxonomy (984): 1–131. Bibcode:2025EJTax.984....1C. doi:10.5852/ejt.2025.984.2851.
  32. ^ Otero, R. A. (2025). "New Paleogene records of cartilaginous fishes (Chondrichthyes) from central Chile, including the oldest lamnid diversity from the southeastern Pacific". PeerJ. 13 e19996. doi:10.7717/peerj.19996. PMC 12422258. PMID 40936772.
  33. ^ a b Wick, S. L.; Lehman, T. M. (2025). "New sharks in a chondrichthyan fauna from the Upper Cretaceous Aguja Formation (lower Campanian) of West Texas support biogeographic segregation among chondrichthyans in the Western Interior". Cretaceous Research. 175 106151. 106151. Bibcode:2025CrRes.17506151W. doi:10.1016/j.cretres.2025.106151.
  34. ^ a b Hodnett, J.-P. M.; Toomey, R.; Sues, H.-D.; Santucci, V. L.; Tolleson, K.; Tweet, J. (2025). "A new euchondrocephalan chondrichthyan (Chondrichthyes, Euchondrocephali) from the middle Mississippian (Viséan) Joppa Member of the Ste. Genevieve Formation at Mammoth Cave National Park, Kentucky, USA and a reassessment of the lower Mississippian (Tournaisian-Viséan) "Helodus" coxanus Newberry, 1897". New Mexico Museum of Natural History and Science Bulletin. 100: 87–93.
  35. ^ Canevet, J. M. (2025). "Paralopias follioti n. gen. n. sp., un nouvel Alopiidae Bonaparte, 1838 (Elasmobranchii, Lamniformes) provenant du Serravallien (Miocène Moyen) de Salles (Gironde, France)". Cossmanniana. 26: 105–121.
  36. ^ Dearden, R. P.; Johanson, Z.; O'Neill, H. L.; Miles, K.; Bernard, E. L.; Clark, B.; Underwood, C. J.; Rücklin, M. (2025). "Three-dimensional fossils of a Cretaceous collared carpet shark (Parascylliidae, Orectolobiformes) shed light on skeletal evolution in galeomorphs". Royal Society Open Science. 12 (4). 242011. Bibcode:2025RSOS...1242011D. doi:10.1098/rsos.242011. PMC 12040461. PMID 40309188.
  37. ^ Carrillo-Briceño, J. D.; Stössel, I.; Kindlimann, R.; Klug, C. (2025). "A new hybodontiform shark (Strophodus Agassiz, 1838) from the Upper Jurassic of Switzerland". Swiss Journal of Palaeontology. 144 (1) 36. Bibcode:2025SwJP..144...36C. doi:10.1186/s13358-025-00376-3. PMC 12241249. PMID 40656434.
  38. ^ Artüz, M. L.; Sakınç, M. (2025). "Description of a new species, Xiphodolamia maliki sp. nov. and the shark teeth of Middle Eocene (Lutetian) aged Soğucak Formation in Küçükçekmece, Istanbul, Turkey". Zootaxa. 5646 (4): 527–544. doi:10.11646/zootaxa.5646.4.3.
  39. ^ Andreev, P. S.; Zhu, M.; Brakenhoff, L.; Li, Q.; Zhao, W.; Peng, L.; Marone, F.; Dearden, R. P.; Rücklin, M. (2025). "The shoulder girdle of early chondrichthyans grew by skeletal remodelling". Biology Letters. 21 (9) 20250411. doi:10.1098/rsbl.2025.0411. PMC 12459293. PMID 40990630.
  40. ^ Ivanov, A. O.; Artyushkova, O. V.; Tagarieva, R. C.; Reshetnikov, P. A. (2025). "Fish Assemblages from the Upper Devonian of the South Urals (Russia)". Paleontological Journal. 58 (4 supplement): S358 – S390. doi:10.1134/S0031030124601737.
  41. ^ Li, J.C.; Sun, Z.Y.; Cuny, G.; Zhao, S.; Yao, M.; Song, L. (2025). "New ichthyofaunal microfossils from the Late Permian at Chaotian, Sichuan, Southwest China". Swiss Journal of Palaeontology. 144 (1) 29. 29. Bibcode:2025SwJP..144...29J. doi:10.1186/s13358-025-00377-2.
  42. ^ Cohen, K. E.; Coates, M. I.; Fraser, G. J. (2025). "Teeth outside the jaw: Evolution and development of the toothed head clasper in chimaeras". Proceedings of the National Academy of Sciences of the United States of America. 122 (37) e2508054122. doi:10.1073/pnas.2508054122. PMC 12452905. PMID 40906772.
  43. ^ Zhao, Y.; Bestwick, J.; Fischer, J.; Bastiaans, D.; Greif, M.; Klug, C. (2025). "The first record of a shortnose chimaera-like egg capsule from the Mesozoic (Late Jurassic, Switzerland)". Swiss Journal of Palaeontology. 144 (1). 8. doi:10.1186/s13358-025-00352-x. PMC 11830639. PMID 39967761.
  44. ^ Duffin, C. J.; Lauer, B.; Lauer, R. (2025). "Chimaeropsis paradoxa Zittel, 1887 (Myriacanthoidei, Holocephali) from the Late Jurassic of Solnhofen". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 313 (3): 245–272. Bibcode:2025NJGPA.313..245D. doi:10.1127/njgpa/2025/1233.
  45. ^ Duffin, C. J.; Ward, D. J. (2025). "A holomorphic chimaeroid (Chondrichthyes, Holocephali) from the Late Cretaceous of Morocco and a review of the genus Elasmodectes Woodward, 1888". New Mexico Museum of Natural History and Science Bulletin. 100: 49–59.
  46. ^ Popov, E. V.; Rogov, M. A. (2025). "Polar Records of Chimaeroid Fishes (Holocephali, Chimaeroidei) from the Upper Cretaceous of Eastern Siberia". Paleontological Journal. 58 (4 supplement): S434 – S444. doi:10.1134/S0031030124601786.
  47. ^ Cerda, I.; Gouiric Cavalli, S.; Reguero, M. A. (2025). "Dental plate histology of †Ischyodus dolloi (Chondrichthyes, Holocephali), from Antarctica". Journal of Anatomy. 247 (2): 201–222. doi:10.1111/joa.14257. PMC 12265032. PMID 40251991.
  48. ^ Gayford, J. H.; Jambura, P. L. (2025). "Drivers of diversification in sharks and rays (Chondrichthyes: Elasmobranchii)". Frontiers in Ecology and Evolution. 12 1530326. Bibcode:2025FrEEv..1230326G. doi:10.3389/fevo.2024.1530326. PMC 7617448. PMID 40027935.
  49. ^ Doyle, E. (2025). "First Irish Record of Denticles of the Enigmatic Paleozoic Shark Listracanthus hystrix from the Carboniferous of County Clare, Ireland". Irish Journal of Earth Sciences. 43: 45–50. doi:10.1353/ijes.2025.a964647.
  50. ^ Greif, M.; Calandra, I.; Lautenschlager, S.; Kaiser, T. M.; Mezane, M.; Klug, C. (2025). "Reconstruction of feeding behaviour and diet in Devonian ctenacanth chondrichthyans using dental microwear texture and finite element analyses". Royal Society Open Science. 12 (1). 240936. Bibcode:2025RSOS...1240936G. doi:10.1098/rsos.240936. PMC 11774596. PMID 39881788.
  51. ^ Vida, T. P.; Kriwet, J.; Martin, T. (2025). "A taxonomic and paleoecological review of the Rhaetian chondrichthyan fauna of Bonenburg (NRW) Germany". PalZ. doi:10.1007/s12542-025-00744-x.
  52. ^ Eltink, E.; da Silva, K. R.; de França, M. A. G.; de Morais, D. M. F.; Soto, M.; Duffin, C. J. (2025). "Morphology and paleoecology of a hybodontiform with serrated teeth, Priohybodus arambourgi, from the Late Jurassic of northeastern Brazil". The Anatomical Record ar.25671. doi:10.1002/ar.25671. PMID 40254967.
  53. ^ Valentin, X.; Vullo, R.; Cuny, G.; Jansen, O.; Garcia, G. (2025). "Hybodont shark remains from Campanian (Upper Cretaceous) continental deposits of southern France". Cretaceous Research. 177 106205. doi:10.1016/j.cretres.2025.106205.
  54. ^ Staggl, M. A.; De Gracia, C.; López-Romero, F. A.; Stumpf, S.; Villalobos-Segura, E.; Benton, M. J.; Kriwet, J. (2025). "The Drivers of Mesozoic Neoselachian Success and Resilience". Biology. 14 (2). 142. doi:10.3390/biology14020142. PMC 11852107. PMID 40001910.
  55. ^ Comans, C. M.; Tobin, T. S.; Totten, R. L. (2025). "Oxygen isotope composition of teeth suggests endothermy and possible migration in some Late Cretaceous shark taxa from the Gulf Coastal Plain, USA". Paleobiology. 50 (4): 648–660. doi:10.1017/pab.2024.45.
  56. ^ Benavides-Cabra, C. D.; Páramo-Fonseca, M. E.; Narváez-Rincón, J. A.; Pomar, D. E. (2025). "A large lamniform shark from the Aptian of Villa de Leiva (Boyacá, Colombia), based on the first Lower Cretaceous shark specimen preserving both teeth and vertebrae". Cretaceous Research. 178 106211. doi:10.1016/j.cretres.2025.106211.
  57. ^ Amadori, M.; Japundžić, S.; Amalfitano, J.; Giusberti, L.; Fornaciari, E.; Jambura, P. L.; Kriwet, J. (2025). "New insights on the shell-crusher shark Ptychodus decurrens Agassiz, 1838 (Elasmobranchii, Ptychodontidae) based on the first known articulated dentition from the Upper Cretaceous of Croatia". Swiss Journal of Palaeontology. 144 (1). 2. doi:10.1186/s13358-024-00340-7. PMC 11711565. PMID 39802099.
  58. ^ Shimada, K.; Motani, R.; Wood, J. J.; Sternes, P. C.; Tomita, T.; Bazzi, M.; Collareta, A.; Gayford, J. H.; Türtscher, J.; Jambura, P. L.; Kriwet, J.; Vullo, R.; Long, D. J.; Summers, A. P.; Maisey, J. G.; Underwood, C.; Ward, D. J.; Maisch, H. M.; Perez, V. J.; Feichtinger, I.; Naylor, G. J. P.; Moyer, J. K.; Higham, T. E.; Silva, J. P. C. B.; Bornatowski, H.; González-Barba, G.; Griffiths, M. L.; Becker, M. A.; Siversson, M. (2025). "Reassessment of the possible size, form, weight, cruising speed, and growth parameters of the extinct megatooth shark, Otodus megalodon (Lamniformes: Otodontidae), and new evolutionary insights into its gigantism, life history strategies, ecology, and extinction". Palaeontologia Electronica. 28 (1). 28.1.a12. doi:10.26879/1502. PMC 7617484. PMID 40105087.
  59. ^ McCormack, J.; Feichtinger, I.; Fuller, B. T.; Jaouen, K.; Griffiths, M. L.; Bourgon, N.; Maisch, H.; Becker, M. A.; Pollerspöck, J.; Hampe, O.; Rössner, G. E.; Assemat, A.; Müller, W.; Shimada, K. (2025). "Miocene marine vertebrate trophic ecology reveals megatooth sharks as opportunistic supercarnivores". Earth and Planetary Science Letters. 664 119392. 119392. Bibcode:2025E&PSL.66419392M. doi:10.1016/j.epsl.2025.119392.
  60. ^ Godfrey, S. J.; Perez, V. J.; Jones, M.; Chapman, P. F.; Spencer, N.; Osborne, J. E. (2025). "New light on the trophic ecology of Carcharodon hastalis from teeth embedded in Miocene cetacean vertebrae from Calvert Cliffs in Maryland, USA". Acta Palaeontologica Polonica. 70 (2): 329–337. doi:10.4202/app.01241.2025.
  61. ^ Marion, A. F. P.; Condamine, F. L.; Guinot, G. (2025). "Bioluminescence and repeated deep-sea colonization shaped the diversification and body size evolution of squaliform sharks". Proceedings of the Royal Society B: Biological Sciences. 292 (2042). 20242932. doi:10.1098/rspb.2024.2932. PMC 11880842. PMID 40040453.
  62. ^ Capasso, L.; Abdel Aziz, S.; Tantawy, A. A.; Mousa, M. K.; Wahba, D. G. A.; Abu El-Kheir, G. A. (2024). "The first described Onchopristis Stromer, 1917, (Elasmobranchii: †Onchopristidae) from the Marine Maastrichtian of Dakhla Formation, Western Desert, Egypt". Journal of African Earth Sciences. 220 105415. 105415. Bibcode:2024JAfES.22005415C. doi:10.1016/j.jafrearsci.2024.105415.
  63. ^ Greenfield, T. (2025). "No evidence for a giant, late-surviving Onchopristis: Comment on Capasso et al. (2024)". Journal of African Earth Sciences. 223 105541. 105541. Bibcode:2025JAfES.22305541G. doi:10.1016/j.jafrearsci.2025.105541.
  64. ^ Capasso, L.; Abdel Aziz, S.; Tantawy, A. A.; Mousa, M. K.; Wahba, D. G. A.; Abu El-Kheir, G. A. (2025). "Comments on the Greenfield (2025)". Journal of African Earth Sciences. 228 105642. 105642. Bibcode:2025JAfES.22805642C. doi:10.1016/j.jafrearsci.2025.105642.
  65. ^ Collareta, A.; Mollen, F. H. (2025). "A new locality in Spain for Nebriimimus wardi, an enigmatic Pliocene skate previously known only from Italy". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 315 (1): 67–74. Bibcode:2025NJGPA.315...67C. doi:10.1127/njgpa/1265.
  66. ^ Gayford, J. H.; Jambura, P. L.; Türtscher, J.; Sternes, P. C.; Seamone, S. G.; Shimada, K. (2025). "Habitat Availability, Jurassic and Cretaceous Origins of the Deep-Bodied Shark Morphotype and the Rise of Pelagic Sharks". Ecology and Evolution. 15 (9) e72082. Bibcode:2025EcoEv..1572082G. doi:10.1002/ece3.72082. PMC 12396820. PMID 40896097.
  67. ^ Assemat, A.; Adnet, S.; Martin, J. E. (2025). "Reconstructing the trophic structure of Maastrichtian elasmobranch communities in Morocco using calcium isotopes". Gondwana Research. 146: 228–234. Bibcode:2025GondR.146..228A. doi:10.1016/j.gr.2025.05.021.
  68. ^ Cañete-Cañete, N. G.; Villafaña, J. A.; Farias, L.; Gayo, E. M.; Rivadeneira, M. M. (2025). "The fossil record of chondrichthyans (Elasmobranchii, Holocephali) from the Cretaceous–Eocene in Chile: diversity and palaeobiogeographic implications". Historical Biology: An International Journal of Paleobiology: 1–19. doi:10.1080/08912963.2025.2530141.
  69. ^ Chaskar, K.; Sagar, R.; Padia, D. J.; Amal, M. S.; Chauhan, G.; Prasanna, K.; Kapur, V. V.; Pandya, P. J.; Kumar, K.; Thakkar, M. G. (2025). "New record of selachian (shark) fauna from the early Miocene (Aquitanian) of Kachchh region (western India): palaeoecological and palaeobiogeographic significance". Historical Biology: An International Journal of Paleobiology: 1–25. doi:10.1080/08912963.2025.2540449.
  70. ^ Höltke, O.; Lechner, T. S.; Gold-Lechner, I. M.; Rasser, M. W. (2025). "New additions and expanded insights into the elasmobranch fauna of the Upper Marine Molasse (Ottnangian, Lower Miocene) of Ursendorf and Rengetsweiler (Baden-Württemberg, SW Germany)". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. doi:10.1127/njgpa/1280.
  71. ^ Feichtinger, I.; Weinmann, A. E.; Harzhauser, M.; Schwarzhans, W.; Golebiowski, R.; Pollerspöck, J. (2025). "Deep-marine elasmobranchs from the Badenian (Langhian, Middle Miocene) of the Central Paratethys of Austria". Austrian Journal of Earth Sciences. 118 (1): 205–217. Bibcode:2025AsJES.118..205F. doi:10.17738/ajes.2025.0012.
  72. ^ Pagliuzzi, E.; Carnevale, G.; Kriwet, J.; Marramà, G. (2025). "Geometric morphometrics as a tool to support taxonomic identification in palaeontology: A comparison with traditional morphometrics in the study of isolated fossil shark teeth". Palaeontologia Electronica. 28 (2) 28.2.a33. doi:10.26879/1567.
  73. ^ Liu, J.; Brinkman, D. B.; Murray, A. M.; Newbrey, M. G.; Zhou, Z.; Van Loon, L. L.; Banerjee, N. R. (2025). "Marine origins and freshwater radiations of the otophysan fishes". Science. 390 (6768): 65–69. doi:10.1126/science.adr4494. PMID 41037602.
  74. ^ a b c Reichenbacher, B.; Bannikov, A. F. (2025). "Diversity of gobioid fishes in the late Middle Miocene of northern Moldova, Eastern Paratethys—part III: dwarf gobies". PalZ. 99 (3): 285–318. Bibcode:2025PalZ..tmp...33R. doi:10.1007/s12542-025-00726-z.{{cite journal}}: CS1 maint: bibcode (link)
  75. ^ a b c d e f g h i j Calzoni, P.; Giusberti, L.; Carnevale, G. (2025). "The Ypresian fishes of the Solteri Lagerstätte (Trento, Northern Italy): a glimpse into the early Eocene Tethyan mesopelagic assemblages". Rivista Italiana di Paleontologia e Stratigrafia. 131 (2): 457–514. Bibcode:2025RIPS..13128705C. doi:10.54103/2039-4942/28705.
  76. ^ Gallo, Valéria; de Figueiredo, Francisco J.; Brum, Arthur Souza; Soares, Marina Bento; Sayão, Juliana Manso; Pinheiro, André Eduardo Piacentini; Figueiredo, Rodrigo Giesta; Lopes, Ricardo Tadeu; de Araújo, Olga Maria Oliveira; Kellner, Alexander W. A. (2025-08-11). "First dercetid fish from the Upper Cretaceous of Antarctica". Scientific Reports. 15 (1): 26650. Bibcode:2025NatSR..1526650G. doi:10.1038/s41598-025-03570-y. ISSN 2045-2322. PMC 12339975. PMID 40790045.
  77. ^ Lund, R.; Grogan, E. D.; Jacob, A. (2025). "Apholidotus, a Highly Specialized New Actinopterygian from the Bear Gulch Limestone (Heath Formation, Serpukhovian, Upper Mississippian) of Montana, USA". Annals of Carnegie Museum. 91 (1): 39–54. Bibcode:2025AnCM...91..103L. doi:10.2992/007.091.0103.
  78. ^ a b c d Brinkman, D. B.; López, J. A.; Erickson, G. M.; Eberle, J. J.; Muñoz, X.; Wilson, L. N.; Perry, Z. R.; Murray, A. M.; Van Loon, L.; Banerjee, N. R.; Druckenmiller, P. S. (2025). "Fishes from the Upper Cretaceous Prince Creek Formation, North Slope of Alaska, and their palaeobiogeographical significance". Papers in Palaeontology. 11 (3). e70014. Bibcode:2025PPal...1170014B. doi:10.1002/spp2.70014.
  79. ^ a b Ridolfi, L.; Bahrami, A.; Yazdi, M.; Schrøder, A. E.; Marramà, M.; Carnevale, G. (2025). "The deep-sea hatchetfish Argyropelecus (Sternoptychidae) in the Eocene of Iran: description and phylogenetic relationships of two new species from the Pabdeh Formation". Rivista Italiana di Paleontologia e Stratigrafia. 131 (3): 603–629. doi:10.54103/2039-4942/29039.
  80. ^ Amalfitano, J.; Marramà, G.; Bannikov, A. F.; Dalla Vecchia, F. M.; Carnevale, G. (2025). "A new armigatid fish (Clupeomorpha, Ellimmichthyiformes) from the Lower Cretaceous of northeastern Italy". Journal of Vertebrate Paleontology. 45 (1). e2470026. doi:10.1080/02724634.2025.2514113.
  81. ^ Martinelli, A. G.; Marinho, T. S.; Panzeri, K. M.; Bogan, S.; Iori, F. V.; Lopes, J. M.; Neto, F. M.; Fonseca, P. H.; Basilici, G.; Vega, N.; Ribeiro, L. C. B. (2025). "A new early diverging lepisosteid fish (Lepisosteiformes) from the Late Cretaceous of southeastern Brazil". Journal of South American Earth Sciences. 152 105325. 105325. Bibcode:2025JSAES.15205325M. doi:10.1016/j.jsames.2024.105325.
  82. ^ Medina-Castañeda, C. I.; Cantalice, K. M.; Castañeda-Posadas, C. (2025). "A new crossognathiform fish (Teleostei: †Crossognathiformes) from San José de Gracia quarry reveals a great diversity in the Cretaceous outcrops of Mexico". Cretaceous Research. 166 106026. 106026. Bibcode:2025CrRes.16606026M. doi:10.1016/j.cretres.2024.106026.
  83. ^ Bean, L. B. (2025). "Cacatualepis: a new genus name for coccolepids from the Australian Mesozoic". Alcheringa: An Australasian Journal of Palaeontology: 1–31. doi:10.1080/03115518.2025.2488057.
  84. ^ Reichenbacher, B.; Bannikov, A. F.; Erpenbeck, D. (2025). "Earliest gobioid fishes were coral-reef associated dwarfs: New evidence from the Eocene of Monte Bolca, Italy". Journal of Systematic Palaeontology. 23 (1) 2546601. Bibcode:2025JSPal..2346601R. doi:10.1080/14772019.2025.2546601.
  85. ^ Ebert, M.; López-Arbarello, A. (2025). "A new species of the genus Caturus (Caturidae, Amiiformes) from the Upper Jurassic of the Solnhofen Archipelago (Germany)". Swiss Journal of Palaeontology. 144 (1) 50. Bibcode:2025SwJP..144...50E. doi:10.1186/s13358-025-00383-4.
  86. ^ Guadarrama, A.; Cantalice, K. M. (2025). "Two contemporaneous morphs of fossil Chanos Lacepède, 1803 (Gonorynchiformes, Chanidae) from Paleocene (Danian) outcrops near Palenque (Mexico) revealed by geometric morphometrics indicate conservatism in milkfishes after the K/Pg boundary". PLOS ONE. 20 (3). e0313912. Bibcode:2025PLoSO..2013912G. doi:10.1371/journal.pone.0313912. PMC 11882075. PMID 40043070.
  87. ^ Bellwood, D. R.; Bannikov, A. F.; Zorzin, R. (2025). "A new genus and species of damselfish (Pomacentridae) from the Eocene of Bolca, Northern Italy, with notes on the evolution of predator-prey interactions in coral reef fishes". Zootaxa. 5642 (6): 562–572. doi:10.11646/zootaxa.5642.6.4.
  88. ^ Cantalice, K. M.; Salgado-Garrido, H. E.; Sosa-Rodríguez, E.; Vilchis-Zapata, K.; González-Barba, G. (2025). "Underwater paleontology inside cenotes reveals the Miocene-Pliocene fish diversity in the Yucatan Peninsula, southeast Mexico". PLOS ONE. 20 (2). e0315382. Bibcode:2025PLoSO..2015382C. doi:10.1371/journal.pone.0315382. PMC 11801553. PMID 39913453.
  89. ^ Davesne, D.; Carnevale, G. (2025). "An enigmatic teleost fish from the Eocene of Bolca (Italy) with unusual larval-like features". Papers in Palaeontology. 11 (3). e70017. Bibcode:2025PPal...1170017D. doi:10.1002/spp2.70017.
  90. ^ Aguilera, O.; De Gracia, C.; Rodriguez, F.; Oliveira de Araújo, O.; Buckup, P. A.; Béarez, P.; Linhares, A. P.; Costi, H. T.; Schwarzhans, W.; Costeur, L.; Thivaiou, D.; Silveira, C. S.; Lopes, R. T. (2025). "Fossil deep-sea snapper (Actinopterygii: Lutjanidae) from the Last Interoceanic Central American Deep Strait (LICADS)". Swiss Journal of Palaeontology. 144 (1) 53. Bibcode:2025SwJP..144...53A. doi:10.1186/s13358-025-00391-4.
  91. ^ McCurry, Matthew R.; Gill, Anthony C.; Baranov, Viktor; Hart, Lachlan J.; Slatyer, Cameron; Frese, Michael (2025). "The paleobiology of a new osmeriform fish species from Australia". Journal of Vertebrate Paleontology. 44 (5) e2445684. doi:10.1080/02724634.2024.2445684. ISSN 0272-4634.
  92. ^ Schrøder, A. E.; Carnevale, G. (2025). "Gerpegezhus daniaoriundus: a new species of centriscoid fish (Gerpegezhidae) from the Eocene Fur Formation of Denmark". Journal of Paleontology. 99 (2): 369–381. doi:10.1017/jpa.2025.10123.
  93. ^ Aguilera, O.; de Gracia, C.; Rodriguez, F.; de Araújo, O. O.; Schwarzhans, W.; Béarez, P.; Lombarte, A.; Buckup, P. A.; Lopes, R. T. (2025). "Fossil moray eels (Muraenidae) from the interoceanic Central American seaway". Geobios. 91: 21–41. Bibcode:2025Geobi..91...21A. doi:10.1016/j.geobios.2024.12.004.
  94. ^ a b c d e f g Conedera, D.; Hitij, T.; Monari, S.; Gatto, R.; Andreetti, M.; Tintori, A. (2025). "The miniature fish Habroichthys (Actinopterygii; Peltopleuriformes): seven new species from the Middle Triassic of Italy and Slovenia reveal insights on its palaeobiology, palaeobiogeography, and palaeoecology". Geobios. doi:10.1016/j.geobios.2025.06.001.
  95. ^ Schrøder, A. E.; Carnevale, G. (2025). "The putative lampridiform Iratusichthys ulrikii gen. et sp. nov. from the Stolleklint clay unit of the Ølst Formation, Denmark". Bulletin of the Geological Society of Denmark. 74: 33–47. Bibcode:2025BuGSD..74...33S. doi:10.37570/bgsd-2025-74-04.
  96. ^ Shen, C. (2025). "A new early actinopterygian from the Mid-Pennsylvanian Logan Quarry Shale member of Indiana". PLOS ONE. 20 (5). e0320932. Bibcode:2025PLoSO..2020932S. doi:10.1371/journal.pone.0320932. PMC 12057928. PMID 40333702.
  97. ^ Murray, A. M.; Champagne, D. E. (2025). "A new species of early Oligocene flatfish (Pleuronectiformes) from Oregon, USA". Geological Magazine. 162 e22. Bibcode:2025GeoM..162E..22M. doi:10.1017/S0016756825100125.
  98. ^ Taverne, L.; Smith, T. (2025). "First Paleocene elopid fish (Teleostei, Elopiformes): Landanaelops gunnelli gen. and sp. nov. from the marine margin of the Congo Basin, Cabinda, Angola" (PDF). Proceedings of the Royal Academy for Overseas Sciences.
  99. ^ Plax, D. P.; Bakaev, A. S.; Naugolnykh, S. V. (2025). "A new species of the Devonian actinopterygian fish Moythomasia from Belarus". Rivista Italiana di Paleontologia e Stratigrafia. 131 (1): 25–38. Bibcode:2025RIPS..13122868P. doi:10.54103/2039-4942/22868.
  100. ^ a b Kovalchuk, O.; Bienkowska-Wasiluk, M.; Dubikovska, A.; Świdnicka, E.; Stefaniak, K.; Khekalo, O.; Barkaszi, Z. (2025). "Oligocene flatfishes (Teleostei, Pleuronectiformes) of the Outer Carpathian Basin". Journal of Vertebrate Paleontology. 45 (1) e2520490. doi:10.1080/02724634.2025.2520490.
  101. ^ Bauer, E.; Cerwenka, A. F.; Schliewen, U. K.; Reichenbacher, B. (2025). "New osteological characteristics identify the first stem sleeper goby (Gobioidei, Odontobutidae) from the upper Eocene". Papers in Palaeontology. 11 (4) e70029. Bibcode:2025PPal...1170029B. doi:10.1002/spp2.70029.
  102. ^ a b Trif, N.; Szabó, M. (2025). "A revision of the pycnodont genus Phacodus and the description of a new species, Phacodus arghiusi sp. nov, from the Eocene of the Transylvanian Basin, Romania". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2025.2535016.
  103. ^ Micklich, N.; Přikryl, T. (2025). "†Propercarina occidentalis, sp. nov., a new percomorph from the Oligocene of the Unterfeld ("Frauenweiler") clay pit, and its relationships to Stromateoidei". PalZ. Bibcode:2025PalZ..tmp...47M. doi:10.1007/s12542-025-00740-1.{{cite journal}}: CS1 maint: bibcode (link)
  104. ^ Stack, J.; Nesbitt, S. J.; Stricklin, M. L.; Stocker, M. R. (2025). "A new species of the ray-finned fish Saurichthys (Actinopterygii) from the Dockum Group of Texas (Upper Triassic, Norian) highlights the late appearance of elongate jaws in neopterygians". Journal of Vertebrate Paleontology. 44 (5). e2470026. doi:10.1080/02724634.2025.2470026.
  105. ^ Maxwell, E. E.; Cooper, S. L. A.; Serafini, G.; Schweigert, G. (2025). "A new hypsocormine pachycormid from the Upper Jurassic Nusplingen Plattenkalk (Kimmeridgian, Germany) provides new insights into body plan evolution and scale reduction in Pachycormidae (Actinopterygii)". Journal of Vertebrate Paleontology. 44 (5). e2490123. doi:10.1080/02724634.2025.2490123.
  106. ^ Wilson, C. D.; Mansky, C. F.; Anderson, J. S. (2025). "A new predatory actinopterygian from the Tournaisian of Nova Scotia provides insight into the evolution of actinopterygian feeding". Journal of Vertebrate Paleontology. 44 (6). e2498453. doi:10.1080/02724634.2025.2498453.
  107. ^ Pacheco-Ordaz, S.; Mejía, O.; Alvarado-Ortega, J. (2025). "Tahnaichthys magnuserrata gen. and sp. nov., a double-hump pycnodontid (Actinopterygii, Pycnodontiformes) fish from the Albian limestones of the Tlayúa Quarry, Puebla, Mexico". Journal of South American Earth Sciences. 152 105277. 105277. Bibcode:2025JSAES.15205277P. doi:10.1016/j.jsames.2024.105277.
  108. ^ Stack, J. R.; Gottfried, M. D.; Stocker, M. R. (2025). "A New Lower Permian Ray-Finned Fish (Actinopterygii) From South Dakota and the Use of Tree Space to Find Rogue Taxa in Phylogenetic Analysis of Morphological Data". Bulletin of the Society of Systematic Biologists. 3 (2): 1–29. doi:10.18061/bssb.v3i2.9825.
  109. ^ a b Ebert, M. (2025). "New species of the genus Thrissops (Teleostei, Ichthyodectiformes) in the Upper Jurassic of the Solnhofen-Archipelago (Germany) and Kimmeridge Clay (England)". Zitteliana. 99: 1–32. doi:10.3897/zitteliana.99.159055.
  110. ^ a b c d e Schwarzhans, W. W.; Cotton, L. J. (2025). "First Marine Fossil Otoliths (Teleostei) from East Africa (Tanzania)". Diversity. 17 (4). 255. Bibcode:2025Diver..17..255S. doi:10.3390/d17040255.
  111. ^ a b c d e f g Pindakiewicz, M. K.; Hryniewicz, K.; Rinkevičiūtė, S.; Sztajner, P.; Janiszewska, K.; Kaim, A. (2025). "Jurassic teleost diversity and abundance changes, recorded by otolith and cephalopod statolith assemblages". Journal of Vertebrate Paleontology e2513091. doi:10.1080/02724634.2025.2513091.
  112. ^ a b c d e f g h i j k l m n o p q r Schwarzhans, W.; Radwańska, U. (2025). "The hidden fish diversity from the Langhian (Middle Miocene, Badenian) of the Central Paratethys - tales from an extinct biodiversity hotspot". Contributions from the Museum of Paleontology, University of Michigan. 37 (2): 12–57. doi:10.7302/26784.
  113. ^ a b c d e f g h i j k Schwarzhans, W. (2025). "The deepwater bony fish fauna from the late Badenian (Serravallian) of Walbersdorf, Austria - reconstructed with otoliths". Rivista Italiana di Paleontologia e Stratigrafia. 131 (3): 547–597. doi:10.54103/2039-4942/28697.
  114. ^ a b c d Lin, C.-H.; O'Dea, A. (2025). "Remarkable dominance of myctophid otoliths in Upper Miocene Chagres Formation, Caribbean Panama". PeerJ. 13 e20155. doi:10.7717/peerj.20155.
  115. ^ Trif, N.; Pirnea, R.; Čerňanský, A.; Schwarzhans, W.; Bălc, R.; Jain, S.; Kaim, A.; Bakayeva, S.; Hryniewicz, K. (2025). "A diverse Campanian biota from the Bozeș Formation (Petrești, Romania): Insights into the paleontology and paleoecology of a transitional sequence". Palaeontologia Electronica. 28 (2) 28.2.a32. doi:10.26879/1536.
  116. ^ Schrøder, A. E.; Carnevale, G.; Schwarzhans, W. (2025). "First occurrence of a fish otolith from the Eocene Fur Formation, Denmark". Bulletin of the Geological Society of Denmark. 74: 25–32. Bibcode:2025BuGSD..74...25S. doi:10.37570/bgsd-2025-74-03.
  117. ^ Chen, D. (2025). "Lungfish-like antero-labial tooth addition and amphibian-like enameloid-enamel transition in the coronoid of a Devonian stem actinopterygian". Journal of Anatomy. 247 (3–4) joa.14240. doi:10.1111/joa.14240. PMC 12397074. PMID 40083060.
  118. ^ Igielman, B.; Figueroa, R. T.; Higgins, R. R.; Pierce, S. E.; Coates, M. I.; Troyer, E. M.; Fernandez, V.; Dollman, K.; Lu, J.; Zhu, M.; Friedman, M.; Giles, S. (2025). "The lower jaw of Devonian ray-finned fishes (Actinopterygii): Anatomy, relationships, and functional morphology". The Anatomical Record ar.70005. doi:10.1002/ar.70005. PMID 40692320.
  119. ^ Wilson, C. D.; Mansky, C. F.; Anderson, J. S. (2025). "Two partial actinopterygian neocrania (occipital ossifications) from Blue Beach, Nova Scotia". Canadian Journal of Earth Sciences. 62 (9): 1414–1429. Bibcode:2025CaJES..62.0009W. doi:10.1139/cjes-2025-0009.
  120. ^ Giles, S.; Kolmann, M.; Friedman, M. (2025). "Tongue-bite apparatus highlights functional innovation in a 310-million-year-old ray-finned fish". Biology Letters. 21 (9) 20250270. doi:10.1098/rsbl.2025.0270. PMC 12405943. PMID 40898813.
  121. ^ Karaseva, U. I.; Bakaev, A. S. (2025). "Ray-finned fish remains from the Vyatkian (Upper Permian) of the Nizhny Novgorod Region". Paleontological Journal. 59 (4): 406–420. doi:10.1134/S0031030125600386.
  122. ^ Gonçalves, D.; Luccisano, V. (2025). "Taxonomic status of 'Palaeoniscum delessei' (early Permian, Bourbon-l'Archambault Basin, Allier, France)". Journal of Vertebrate Paleontology. 45 (1) e2523972. doi:10.1080/02724634.2025.2523972.
  123. ^ Cavicchini, I.; Argyriou, T.; Fernandez, V.; Dollman, K.; Giles, S. (2025). "Redescription of Pteronisculus gunnari (Nielsen, 1942) from a juvenile specimen from the Early Triassic of East Greenland, with implications for the ontogeny of early actinopterygians". Journal of Systematic Palaeontology. 23 (1). 2492673. Bibcode:2025JSPal..2392673C. doi:10.1080/14772019.2025.2492673.
  124. ^ Cooper, S. L. A.; Jacobs, M.; Ferrari, L.; Martill, D. M. (2025). "Skull roof anatomy of the Early Jurassic (Toarcian) acipenseriform †Gyrosteus mirabilis Woodward ex Agassiz, from Yorkshire, England, elucidates diversity of †Chondrosteidae". Proceedings of the Geologists' Association. 136 (3) 101089. doi:10.1016/j.pgeola.2024.12.004.
  125. ^ Miyata, S.; Nakajima, Y.; Motoyama, I.; Nishimura, T.; Yabumoto, Y. (2025). "A first fossil sturgeon from the Upper Cretaceous (Maastrichtian) of Northwestern Pacific". Cretaceous Research 106251. doi:10.1016/j.cretres.2025.106251.
  126. ^ Capasso, L.; Witzmann, F. (2025). "Atavisms in †Pycnodontomorpha (Osteichthyes: Actinopterygii)". Palaeodiversity. 18 (1): 35–49. doi:10.18476/pale.v18.a3.
  127. ^ Ghosh, T.; Kumar, K.; Swami, N. K. (2025). "Middle Jurassic (Bajocian) pycnodont fishes from the Jaisalmer Basin, western India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. doi:10.1127/njgpa/1284.
  128. ^ Pacheco-Ordaz, S.; Reyes-López, Á.; Alvarado-Ortega, J. (2025). "A Turonian pycnodontiform fish from the San José de Gracia quarry, Puebla, Mexico". Boletín de la Sociedad Geológica Mexicana. 77 (1). A241224. doi:10.18268/BSGM2023v77n1a241224 (inactive 1 July 2025).{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  129. ^ Szabó, M.; Haas, J.; Cawley, J. J. (2025). "Pycnodontid remains from the Upper Cretaceous of Sümeg (western Hungary), with comments on the size of pycnodonts and a summary of the complete fossil record of the order Pycnodontiformes in Hungary". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 315 (2): 143–155. Bibcode:2025NJGPA.315..143S. doi:10.1127/njgpa/1270.
  130. ^ Brinkman, D. B.; Kundrát, M.; Ward, D. J.; Murray, A. M.; Aimbetov, I. K.; Van Loon, L.; Banerjee, N. R. (2025). "Fish Faunas from the Bissekty Formation (Turonian), Uzbekistan: Insights into Biogeographic Connectivity and Climate-Driven Faunal Turnover". Cretaceous Research 106252. doi:10.1016/j.cretres.2025.106252.
  131. ^ Gardner, J. D.; Brinkman, D. B.; Murray, A. M. (2025). "Reidentification of the holotype of 'Ceratodus' hieroglyphus Cope from the Upper Cretaceous (Campanian) of Montana, USA, as the scale of a holostean fish". Palaeobiodiversity and Palaeoenvironments. 105 (2): 545–572. Bibcode:2025PdPe..105..545G. doi:10.1007/s12549-025-00663-4.
  132. ^ Ebert, M.; Etches, S. (2025). "New description of Brachyichthys manselii (Egerton, 1872) comb. nov. (Neopterygii: Halecomorphi) from the Upper Jurassic of Kimmeridge, England". Zoological Journal of the Linnean Society. 205 (2) zlaf119. doi:10.1093/zoolinnean/zlaf119.
  133. ^ Costa, V. P. G.; Aureliano, T.; Santos, C. L. A.; Ghilardi, A. M. (2025). "The oldest occurrence of Lepisosteus (Ginglymodi: Lepisosteiformes: Lepisosteidae) in Gondwana". Historical Biology: An International Journal of Paleobiology: 1–8. doi:10.1080/08912963.2025.2504475.
  134. ^ Ikegami, N.; Yabumoto, Y.; Brito, P. M. (2025). "First Lepisosteidae (Holostei: Ginglymodi) from the Late Cretaceous of Japan". Historical Biology: An International Journal of Paleobiology: 1–7. doi:10.1080/08912963.2025.2543073.
  135. ^ Maxwell, E. E.; Cooper, S. L. A. (2025). "Scale histology in the Early Jurassic fish Pachycormus (Actinopterygii, Pachycormidae)". Journal of Vertebrate Paleontology. 44 (6). e2493164. doi:10.1080/02724634.2025.2493164.
  136. ^ Kanarkina, A.; Zverkov, N. G.; Popov, E. V. (2025). "The first record of the pachycormid fish Bonnerichthys in Eurasia marks a global distribution of Late Cretaceous suspension-feeding giants". Journal of Palaeogeography. 14 (3) 100255. Bibcode:2025JPalG..1400255K. doi:10.1016/j.jop.2025.100255.
  137. ^ Ebert, M.; Kölbl-Ebert, M. (2025). "Jurassic fish choking on floating belemnites". Scientific Reports. 15 (1). 16095. Bibcode:2025NatSR..1516095E. doi:10.1038/s41598-025-00163-7. PMC 12062261. PMID 40341734.
  138. ^ San Román, C.; Marugán Lobón, J.; Martín-Abad, H. (2025). "Soft tissue preservation reveals gastrointestinal variation among the teleosts from Las Hoyas". Spanish Journal of Palaeontology. doi:10.7203/sjp.30318.
  139. ^ Brinkman, D. B.; Divay, J. D.; DeMar, D. G.; Wilson, G. P. (2025). "Moderate extinctions and slow recovery of non-marine teleost fishes across the Cretaceous–Paleogene boundary, with a systematic appraisal of early Paleocene teleost fishes from Saskatchewan, Canada and Montana, USA". Palaeontologia Electronica. 28 (2). 28.2.a28. doi:10.26879/1559.
  140. ^ Serafini, G.; Kriwet, J.; Toldo, T.; Fornaciari, E.; Amalfitano, J.; Carnevale, G. (2025). "Almost billfish: convergent longirostry, micro-dentition, and possible glandular sinuses in a large teleost fish from the Upper Cretaceous of Northern Italy". Journal of Anatomy. 247 (3–4): 418–441. doi:10.1111/joa.14240. PMC 12397074. PMID 40083060.
  141. ^ Prado, G.; Salvato, R. C. J. P. S.; Becker-Kerber, B.; Silva, E. P.; Pinheiro, F. L.; Osés, G. L.; Galante, D.; Rodrigues, F.; Dias, J. J.; Carvalho, I. S.; Saitta, E. T.; Lino, L. M.; Anelli, L. E. (2025). "Fossil fish provide evidence of geomelanin preservation with implications on the visual accuracy of an extinct fish species". Lethaia. 58 (3): 1–17. Bibcode:2025Letha..58..3.7P. doi:10.18261/let.58.3.7.
  142. ^ Yang, T.; Wu, F.; Zhang, C.; He, P.; He, D.; Yang, S.; Qu, Q.; Liu, F. (2025). "Redescription of Plesioschizothorax macrocephalus (Cyprinidae, Schizothoracini) from the Miocene of Lunpola Basin, Central Qinghai-Tibet Plateau, and its paleobiogeographic and paleogeographical implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 674 113035. 113035. Bibcode:2025PPP...67413035Y. doi:10.1016/j.palaeo.2025.113035.
  143. ^ Přikryl, T.; Blain, H.-A.; Oms, O.; Rodríguez-Salgado, P.; Moreno Ribas, E.; Agustí, J.; Campeny, G.; Gómez de Soler, B. (2025). "Early Pliocene barb (Teleostei, Cyprinidae, Barbinae) from the Camp dels Ninots site (Spain)". Rivista Italiana di Paleontologia e Stratigrafia. 131 (2): 261–280. doi:10.54103/2039-4942/26982.
  144. ^ Murray, A. M.; Brinkman, D. B.; Krause, D. W. (2025). "Late Cretaceous invasion of Madagascan fresh waters by percomorph fishes (Teleostei: Acanthomorpha)". Gondwana Research. 144: 197–211. Bibcode:2025GondR.144..197M. doi:10.1016/j.gr.2025.04.012.
  145. ^ Carnevale, G.; Bannikov, A. F. (2025). "On †Protorhamphosus parvulus Daniltshenko, 1968 (Teleostei, Syngnathoidei)". Bollettino della Società Paleontologica Italiana. 64 (2): 409–414. doi:10.4435/BSPI.2025.21 (inactive 16 August 2025).{{cite journal}}: CS1 maint: DOI inactive as of August 2025 (link)
  146. ^ Schwarzhans, W. W.; Bannikov, A. F. (2025). "Otoliths in situ in Pinichthys shirvanensis Bannikov, 2021 (Stromateidae) from the Tarkhanian (Langhian, Middle Miocene) of the northern Caucasus (Russia)". Swiss Journal of Palaeontology. 144 (1) 32. 32. Bibcode:2025SwJP..144...32S. doi:10.1186/s13358-025-00359-4.
  147. ^ Grădianu, I.; Monsch, K. A.; Baciu, D. S. (2025). "Systematic Revision of the Oligocene Billfishes (Istiophoriformes: Palaeorhynchidae) from Romania". Diversity. 17 (6). 393. Bibcode:2025Diver..17..393G. doi:10.3390/d17060393.
  148. ^ Chanet, B. (2025). "Osteology of Arnoglossus sauvagei (Capellini, 1878) (Pleuronectiformes, Bothidae), a fossil flatfish from the Mediterranean Miocene". Bollettino della Società Paleontologica Italiana. 64 (2): 427–433. doi:10.4435/BSPI.2025.24 (inactive 16 August 2025).{{cite journal}}: CS1 maint: DOI inactive as of August 2025 (link)
  149. ^ Ridolfi, L.; Marramà, G.; Tyler, J. C.; Carnevale, G. (2025). "A new fossil clarifies the anatomy and phylogenetic relationships of the Eocene gymnodont fish †Zignoichthys oblongus (Zigno, 1874)". Rivista Italiana di Paleontologia e Stratigrafia. 131 (1): 117–138. Bibcode:2025RIPS..13123409R. doi:10.54103/2039-4942/23409.
  150. ^ Collareta, A.; Casati, S.; Mulè, F.; Pieri, A.; Di Cencio, A.; Bianucci, G. (2025). "A fossil mola from the Mediterranean Pliocene". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 313 (3): 341–351. Bibcode:2025NJGPA.313..341C. doi:10.1127/njgpa/2025/1238.
  151. ^ Přikryl, T.; Castro, A.; Fernando, A. G.; Nogot, J. R. C.; Magtoto, C.; Garas, K.; Mediodia, D.; Lin, C.-H. (2025). "Fossil fish assemblage of the Laguna Formation, Philippines: unveiling the uniqueness of Pleistocene freshwater ecosystems in Southeast Asia". Swiss Journal of Palaeontology. 144 5. 5. doi:10.1186/s13358-024-00347-0.
  152. ^ Dalla Vecchia, F. M.; Amalfitano, J.; Kustatscher, E.; Simonetto, L. (2025). ""Locality 84", a new Cretaceous Konservat-Lagerstätte in the Julian Prealps (Ne Italy)". Rivista Italiana di Paleontologia e Stratigrafia. 131 (2): 383–413. Bibcode:2025RIPS..13127672D. doi:10.54103/2039-4942/27672.
  153. ^ Dubikovska, A.; Górka, M.; Skyrpan, M.; Bienkowska-Wasiluk, M.; Barkaszi, Z.; Kovalchuk, O. (2025). "New data on the early Badenian (Middle Miocene) bony fishes of the Forecarpathian Basin". Journal of Vertebrate Paleontology. 45 (1) e2516023. doi:10.1080/02724634.2025.2516023.
  154. ^ Barkaszi, Z.; Kovalchuk, O. (2025). "Diversity of Late Cenozoic Actinopterygian Assemblages of the South of Eastern Europe". Diversity. 17 (4). 259. Bibcode:2025Diver..17..259B. doi:10.3390/d17040259.
  155. ^ Melendez-Vazquez, F.; Lucaci, A. G.; Selberg, A.; Clavel, J.; Rincon-Sandoval, M.; Santaquiteria, A.; White, W. T.; Drabeck, D.; Carnevale, G.; Duarte-Ribeiro, E.; Miya, M.; Westneat, M. W.; Baldwin, C. C.; Hughes, L. C.; Ortí, G.; Kosakovsky Pond, S. L.; Betancur-R, R.; Arcila, D. (2025). "Ecological interactions and genomic innovation fueled the evolution of ray-finned fish endothermy". Science Advances. 11 (26). eads8488. Bibcode:2025SciA...11S8488M. doi:10.1126/sciadv.ads8488. PMC 12190012. PMID 40561012.
  156. ^ Oyanadel-Urbina, P.; Villafaña, J. A.; Buldrini, K. E.; Ramos-Rojas, H. A.; Hernández-Mora, Y.; Chávez-Hoffmeister, M.; Nielsen, S. N.; Campos-Medina, J. A.; Rebolledo, S.; Rivadeneira, M. M. (2025). "What do we know about Neogene bony fishes from Chile? Diversity and biogeographic implications". Palaeontologia Electronica. 28 (2) 28.2.a30. doi:10.26879/1385.
  157. ^ Goodchild, O. A.; Ciccariello, A. R.; Shubin, N. H.; Daeschler, E. B. (2025). "A new onychodontid (Osteichthyes, Sarcopterygii) from the Upper Devonian (Frasnian) of Devon Island, Nunavut Territory, Canada". Journal of Vertebrate Paleontology. 44 (6). e2498448. doi:10.1080/02724634.2025.2498448.
  158. ^ Smithson, T. R.; Challands, T. J.; Gogáin, A. Ó.; Beeby, E. L.; Clack, J. A. (2025). "Lungfish From the Early Pennsylvanian of Ireland and the Phylogeny of Carboniferous Dipnoi". Irish Journal of Earth Sciences. 43: 61–82. doi:10.1353/ijes.0.a966251.
  159. ^ Babcock, L. E. (2025). "Rediscovery of the Type Specimens of the Sarcopterygian Fishes Onychodus sigmoides and Onychodus hopkinsi from the Devonian of Ohio, USA". Diversity. 17 (6). 375. Bibcode:2025Diver..17..375B. doi:10.3390/d17060375.
  160. ^ Yuan, Z.; Cavin, L.; Song, H. (2025). "On the Incompleteness of the Coelacanth Fossil Record". Fossil Studies. 3 (3). 10. doi:10.3390/fossils3030010.
  161. ^ Cui, X.; Qiao, T.; Peng, L.; Zhu, M. (2025). "New material of the Early Devonian sarcopterygian Styloichthys changae illuminates the origin of cosmine". Journal of Systematic Palaeontology. 23 (1). 2432273. Bibcode:2025JSPal..2332273C. doi:10.1080/14772019.2024.2432273.
  162. ^ Ferrante, C.; Cavin, L. (2025). "A deep dive into the coelacanth phylogeny". PLOS ONE. 20 (6). e0320214. Bibcode:2025PLoSO..2020214F. doi:10.1371/journal.pone.0320214. PMC 12143573. PMID 40478838.
  163. ^ Quinn, J. G.; Whiteside, D. I.; Toriño, P.; Matheau-Raven, E. R.; Benton, M. J. (2025). "Coelacanthiform fishes of the British Rhaetian". Journal of Vertebrate Paleontology e2520921. doi:10.1080/02724634.2025.2520921.
  164. ^ Cooper, S. L. A. (2025). "First record of a latimeriid coelacanth (Actinistia: Latimeriidae) in the Lower Jurassic of Germany". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 314 (3): 335–347. Bibcode:2025NJGPA.314..335C. doi:10.1127/njgpa/1259.
  165. ^ Barbosa, R.; Toriño, P.; Silva, M. C.; Barreto, A. M. F. (2025). "New insights into the taxonomy, ontogeny and ecology of the coelacanth Axelrodichthys araripensis from the Romualdo Formation in the Araripe basin of northeastern Brazil". Historical Biology: An International Journal of Paleobiology: 1–26. doi:10.1080/08912963.2025.2548331.
  166. ^ Bland, J.; Dutel, H.; Long, J. A.; Fabbri, M.; Bevitt, J.; Trinajstic, K.; Panagiotopoulou, O.; Clement, A. M. (2025). "Comparison of diverse mandibular mechanics during biting in Devonian lungfishes". iScience. 28 (7) 112970. 112970. Bibcode:2025iSci...28k2970B. doi:10.1016/j.isci.2025.112970. PMC 12272925. PMID 40687803.
  167. ^ Szrek, P.; Uchman, A.; Grygorczyk, K.; Salwa, S.; Dworczak, P. G. (2025). "Traces of dipnoan fish document the earliest adaptations of vertebrates to move on land". Scientific Reports. 15 (1) 28808. Bibcode:2025NatSR..1528808S. doi:10.1038/s41598-025-14541-8. PMC 12328633. PMID 40770042.
  168. ^ El Fassi El Fehri, A.; Clement, A. M.; Mondéjar Fernández, J.; Greif, M.; Klug, C. (2025). "A new origin of the 'modern' lungfish dentition revealed by taxonomic overlap between Devonian and Carboniferous dipnoans". PeerJ. 13 e19389. e19389. doi:10.7717/peerj.19389. PMC 12143288. PMID 40487057.
  169. ^ Rose, L. J. P.; Heckert, A. B.; Hancox, P. J.; Hageman, S. J. (2025). "Fossil lungfishes (Sarcopterygii, Dipnoi) of the Lower Triassic Driefontein locality in the Burgersdorp Formation, Beaufort Group, of South Africa, and their implications for ceratodontiform diversity after the end-Permian mass extinction". Journal of Vertebrate Paleontology. 45 (1) e2522785. doi:10.1080/02724634.2025.2522785.
  170. ^ Casal, G. A.; Panzeri, K. M.; Alvarez, B. N.; Cardozo, N. V.; Caglianone, J. L.; Luna, M.; Ibiricu, L. M. (2025). "First record of a lungfish (Sarcopterygii: Dipnoi) in the Upper Cretaceous of the Chubut Group, Golfo San Jorge Basin, Argentina. Paleoenvironmental and paleoclimatic considerations". Cretaceous Research. 176 106192. 106192. Bibcode:2025CrRes.17606192C. doi:10.1016/j.cretres.2025.106192.
  171. ^ Batt, J. P.; Challands, T. J.; Long, J. A.; Burke, C.; Clement, A. M. (2025). "New rhizodontid (Tetrapodomorpha, Sarcopterygii) material from Romer's Gap (Tournaisian) of the Ballagan Formation (Scotland, U.K.)". Journal of Vertebrate Paleontology. 45 (1) e2514116. doi:10.1080/02724634.2025.2514116.
  172. ^ Fowns, J. P. (2025). "New description and diagnosis of Eusthenodon wangsjoi (Tetrapodomorpha, Tristichopteridae) from the Upper Devonian Britta Dal Formation of East Greenland". Earth and Environmental Science Transactions of the Royal Society of Edinburgh: 1–28. doi:10.1017/S1755691025000015.
  173. ^ Haridy, Y.; Norris, S. C. P.; Fabbri, M.; Nanglu, K.; Sharma, N.; Miller, J. F.; Rivers, M.; La Riviere, P.; Vargas, P.; Ortega-Hernández, J.; Shubin, N. H. (2025). "The origin of vertebrate teeth and evolution of sensory exoskeletons". Nature. 642 (8066): 119–124. Bibcode:2025Natur.642..119H. doi:10.1038/s41586-025-08944-w. PMC 12137117. PMID 40399678.
  174. ^ Troyer, E. M.; Rivero-Vega, R. A.; Cui, X.; Zhu, M.; Qiao, T.; Saad, H. H.; Figueroa, R. T.; Andrews, J. V.; Clement, A. M.; Lebedev, O. A.; Higgins, R.; Igielman, B.; Pierce, S. E.; Giles, S.; Friedman, M. (2025). "Macroevolutionary role reversals in the earliest radiation of bony fishes". Current Biology. 35 (19): 4631–4641.e3. doi:10.1016/j.cub.2025.08.008. PMID 40897172.
  175. ^ Llewelyn, J.; Long, J. A.; Cloutier, R.; Clement, A. M.; Strona, G.; Saltré, F.; Lee, M. S. Y.; Choo, B.; Trinajstic, K.; Vanhaesebroucke, O.; Fitzpatrick, A.; Bradshaw, C. J. A. (2025). "Trait-space disparity in fish communities spanning 380 million years from the Late Devonian to present". Palaeogeography, Palaeoclimatology, Palaeoecology. 679 113294. Bibcode:2025PPP...67913294L. doi:10.1016/j.palaeo.2025.113294.
  176. ^ Ivanov, A. O.; Hu, K. (2025). "New fish assemblages from the Carboniferous deep-water sections of South China and Western Kazakhstan". Journal of Paleontology: 1–17. doi:10.1017/jpa.2025.10134.
  177. ^ Gonçalves, D.; Luccisano, V.; Rebillard, A.; Logghe, A.; Štamberg, S.; Steyer, J.-S. (2025). "New aquatic vertebrate and ichnological remains from the Upper Carboniferous of Decazeville (Aveyron, France): implications for the paleofauna of the French Variscan basins". Comptes Rendus Palevol. 24 (11): 191–217. doi:10.5852/cr-palevol2025v24a11.
  178. ^ Andrews, J. V.; Shirley, E. A.; Figueroa, R. T. (2025). "Vertebrates of the Blue Ridge Esker (Mississippian, Marshall Sandstone) of Michigan". Contributions from the Museum of Paleontology, University of Michigan. 36 (3): 43–58. doi:10.7302/25119.
  179. ^ Hodnett, J.-P. M.; Mateo, M.; Timko, S. B.; Bovis, J. M.; Mateo, R.; Sues, H.-D.; Santucci, V. L. (2025). "Review of the palaeoichthyological records from the Permian Phosphoria, Park City and Shedhorn formations at Forellen Peak, Grand Teton National Park, Wyoming". New Mexico Museum of Natural History and Science Bulletin. 100: 77–86.
  180. ^ Moreau, J.-D.; Lopez, M.; Lapeyrie, J.; Fouché, S.; Gand, G.; Aubert, N. (2025). "Swimming trails of fishes from the Permian playa-lake ecosystem of the Salagou Formation (Lodève Basin, southern France)". Palaeobiodiversity and Palaeoenvironments. 105 (3): 739–755. Bibcode:2025PdPe..105..739M. doi:10.1007/s12549-025-00644-7.
  181. ^ Antonietto, L. S.; Hamid, I.; Holgado, B.; Rocha, A. L.; Ferreira, M. A.; Saraiva, A. Á. F.; Lacerda, L. D.; Silva, R. C. (2025). "Reconstructing paleotrophic relationships on the Brazilian Romualdo Formation (Lower Cretaceous) through mercury analysis in fossils". Frontiers in Earth Science. 13 1551085. Bibcode:2025FrEaS..1351085A. doi:10.3389/feart.2025.1551085.
  182. ^ Pokorný, R.; Nohra, R.; Abi Saad, P.; Vallon, L. H. (2025). "Death on "live broadcast"—fish mortichnia from the Upper Cretaceous plattenkalk of Lebanon". Paleobiology. 50 (4): 627–640. doi:10.1017/pab.2024.28.
  183. ^ Feichtinger, I.; Harzhauser, M.; Pollerspöck, J.; Auer, G.; Ćorić, S.; Kranner, M.; Kallanxhi, M.-E.; Weinmann, A. E.; Guinot, G. (2025). "Ecological restructuring of North Tethyan marine vertebrate communities triggered by the end-Cretaceous extinction". Proceedings of the National Academy of Sciences of the United States of America. 122 (22). e2409366122. Bibcode:2025PNAS..12209366F. doi:10.1073/pnas.2409366122. PMC 12146742. PMID 40388605.
  184. ^ Deville de Periere, M.; Guinot, G.; Adnet, S.; Riechelmann, S.; Murray, A.; Merle, D.; Cesari, C.; Reid, C.; Sadah, M. (2025). "Biodiversity and paleoenvironments of vertebrate-rich Eocene marine deposits (Lutetian) of the tropical western Neotethys: New insights from the Arabian Platform". Journal of Asian Earth Sciences. 288 106604. Bibcode:2025JAESc.28806604D. doi:10.1016/j.jseaes.2025.106604.
  185. ^ Sambou, B. S.; Diaw, A. A.; Adnet, S. (2025). "A new Miocene–Pliocene fish association from the lateritic sands of Senegal confirms the marine origin of the so-called 'Continental Terminal' Formation in the Thies area". Palaeoworld 200953. doi:10.1016/j.palwor.2025.200953.
  186. ^ Pallacks, S.; Ziveri, P.; Jannke, H. A.; Lin, C.-H.; Subhas, A. V.; Galbraith, E.; Kaboth-Bahr, S.; Friedrich, O.; Bahr, A.; Koutsodendris, A.; Pross, J.; Norris, R. D. (2025). "Ocean deoxygenation linked to ancient mesopelagic fish decline". Communications Earth & Environment. 6 (1) 596. Bibcode:2025ComEE...6..596P. doi:10.1038/s43247-025-02568-8.