2025 in paleobotany
List of years in paleobotany |
---|
Fossil plant research presented in 2025 includes new taxa that were described during the year, as well as other significant discoveries and events related to paleobotany that occurred in 2025.
Algae
[edit]Charophytes
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Zavattieri & Gutiérrez |
A zygnematacean green alga. |
|||||||
Gen. et sp. nov |
Liu et al. |
A member of the family Charophyceae. Genus includes new species T. miraclensis. |
Chlorophytes
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
LoDuca |
||||||||
Gen. et sp. nov |
Zhu et al. |
A member of the family Dunaliellaceae. The type species is A. junggarensis. |
|||||||
Comb. nov |
Valid |
(Mu) |
Early Cretaceous (Aptian) |
Langshan Formation |
A member of Dasycladales belonging to the family Dasycladaceae; moved from Heteroporella xizangensis Mu (1986). |
||||
Sp. nov |
LoDuca |
Silurian (Telychian) |
Schoolcraft Formation |
||||||
Sp. nov |
Valid |
Schlagintweit, Xu & Zhang |
A member of Dasycladales belonging to the family Triploporellaceae. |
||||||
Sp. nov |
Valid |
Sun, Schlagintweit & Li |
Early Cretaceous (Aptian) |
Langshan Formation |
A member of Dasycladales belonging to the family Polyphysaceae. |
||||
Sp. nov |
Valid |
Barattolo et al. |
A member of Dasycladales. |
||||||
Sp. nov |
Valid |
Barattolo et al. |
Early Cretaceous |
A member of Dasycladales. |
Rhodophytes
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Vinn in Vinn et al. |
A red alga belonging to the family Corallinaceae. The type species is A. tinnae. |
|||||||
Sp. nov |
Brenckle & Sheng |
A red alga. |
|||||||
Gen. et sp. nov |
Brenckle & Sheng |
Carboniferous (Serpukhovian) |
Kinkaid Limestone |
A red alga. The type species is V. multigena. |
Phycological research
[edit]- A study on the reproduction of Eugonophyllum, based on fossils from the Carboniferous (Gzhelian) Maping Formation (Guizhou, China), is published by Wang et al. (2025).[10]
Non-vascular plants
[edit]Bryophyta
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Li in Tan et al. |
Cretaceous (Albian–Cenomanian) |
Kachin amber |
A member of the family Calymperaceae. |
|||||
Sp. nov |
Li in Tan et al. |
Cretaceous (Albian–Cenomanian) |
Kachin amber |
A member of the family Calymperaceae. |
|||||
Sp. nov |
Li in Tan et al. |
Cretaceous (Albian–Cenomanian) |
Kachin amber |
A member of Dicranales sensu lato. |
|||||
Gen. et sp. nov |
Valid |
Ignatov in Ignatov et al. |
Eocene |
A moss belonging to the group Hypnales and the family Pylaisiadelphaceae. The type species is R. papillosum. |
|||||
Comb. nov |
Valid |
(Frahm) |
Eocene |
Europe (Baltic Sea region) |
A moss belonging to the family Sematophyllaceae; moved from Hypnites lanceolatus Frahm (2004). |
||||
Sp. nov |
Valid |
Wolski |
Eocene |
Baltic amber |
Europe (Baltic Sea region) |
A moss belonging to the family Sematophyllaceae. |
|||
Comb. nov |
Valid |
(Caspary & Klebs) |
Eocene |
Baltic amber |
Europe (Baltic Sea region) |
A moss belonging to the family Sematophyllaceae; moved from Dicranites subflagellare Caspary & Klebs (1907). |
|||
Sp. nov |
Valid |
Valois et al. |
Early Cretaceous (Valanginian) |
A moss belonging to the family Tricostaceae. Published online in 2024; the final version of the article naming it was published in 2025. |
Marchantiophyta
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Flores & Cariglino |
A liverwort belonging to the group Marchantiales. Genus includes new species C. kurtzii. |
|||||||
Sp. nov |
Valid |
Mamontov, Feldberg, Schäfer-Verwimp & Gradstein in Feldberg et al. |
A liverwort, a species of Frullania. |
||||||
Gen. et sp. nov |
Paulsen et al. |
Eocene |
A liverwort belonging to the group Jungermanniales. The type species is H. pentadactylum. |
||||||
Comb. nov |
(Barale & Ouaja) |
Moved from Hepaticites elegans Barale & Ouaja (2002). |
|||||||
Sp. nov |
Valid |
Katagiri |
Miocene |
Monobe Formation |
A liverwort, a species of Plagiochila. |
||||
Sp. nov |
Song, Ye & Wang |
Cretaceous |
Kachin amber |
A liverwort, a species of Radula. |
|||||
Sp. nov |
Paulsen et al. |
Eocene |
Anglesea amber |
A liverwort, a species of Radula. |
|||||
Sp. nov |
Veselá et al. |
Late Cretaceous |
A liverwort. |
||||||
Sp. nov |
Valid |
Feldberg, Gradstein, Schäfer-Verwimp & Mamontov in Feldberg et al. |
Miocene |
Mexican amber |
A liverwort belonging to the group Porellales and the family Lejeuneeae. |
Non-vascular plant research
[edit]- Evidence of impact of socio-economic and language factors on the documentation of bryophyte fossil record is presented by Blanco-Moreno, Bippus & Tomescu (2025).[21]
Lycophytes
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Gen. et comb. nov |
Carniere, Pozzebon-Silva, Guerra-Sommer, Uhl, Jasper & Spiekermann in Carniere et al. |
A member of Lycopodiales; a new genus for "Lycopodites" riograndensis Salvi et al. (2008). |
|||||||
Sp. nov |
Valid |
López-García, Schmidt & Regalado in López-García et al. |
A species of Selaginella. |
||||||
Gen. et sp. nov |
Valid |
Gensel et al. |
Devonian (Emsian) |
A zosterophyll. Genus includes new species S. semiglobosa. Published online in 2024; the final version of the article naming it was published in 2025. |
|||||
Sp. nov |
Huang & Xue in Huang et al. |
Lycophyte research
[edit]- Zavialova & Polevova (2025) review the distribution of multilamellated zones in spores of extant and fossil lycopsids, and interpret their presence as possible evidence of isoetalean affinity of fossil plants, while noting that their absence does not definitively exclude the possibly of affinities with this group.[26]
- A study on leaf cushions of Sigillaria approximata, providing evidence of independent evolution of leaf abscission in arboreous lycopsids and in euphyllophytes, is published by D'Antonio (2025).[27]
Ferns and fern allies
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Rößler et al. |
Permian |
A calamitalean. Published online in 2024; the final version of the article naming it was published in 2025. |
|||||
Sp. nov |
Hiller, Cheng & Bomfleur |
Late Triassic |
A member of the family Osmundaceae. |
||||||
Sp. nov |
Li & Tian in Li et al. |
Middle Jurassic |
A member of the family Dicksoniaceae. |
||||||
Sp. nov |
Rodriguez Rizk & Cariglino |
Permian (Guadalupian) |
La Golondrina Formation |
A member of Marattiales belonging to the family Psaroniaceae. |
|||||
Sp. nov |
Hermsen et al. |
Early Cretaceous (Albian) |
Kachaike Formation |
A species of Dicksonia. |
|||||
Sp. nov |
Jin et al. |
Early Cretaceous |
A species of Equisetum. |
||||||
Sp. nov |
D'Antonio et al. |
Carboniferous (Moscovian) |
A sphenophyll cone. |
||||||
Gen. et sp. nov |
Valid |
Iglesias et al. |
Paleocene |
Cross Valley-Wiman Formation |
Antarctica |
A member of the family Dryopteridaceae belonging to the subfamily Dryopteridoideae. Genus includes new species I. antarcticus. |
|||
Sp. nov |
Li in Li & Meng |
A member of the family Dennstaedtiaceae. |
|||||||
Sp. nov |
Koppelhus et al. |
Late Cretaceous |
Antarctica |
A member of the family Osmundaceae. |
|||||
Sp. nov |
Aliaga-Castillo et al. |
Pliocene |
A species of Polystichum. |
||||||
Gen. et sp. nov |
Hermsen et al. |
Late Cretaceous (Maastrichtian) |
A fern, probably with affinities with Thyrsopteridaceae. Genus includes new species R. chubutensis. |
||||||
Sp. nov |
Ali & Khan in Ali et al. |
Paleocene–Eocene |
Subathu Formation |
A species of Salvinia. |
|||||
Gen. et sp. nov |
Tian et al. |
Middle Jurassic |
Xinmin Formation |
A member of the family Dennstaedtiaceae. The type species is S. zhengii. |
Pteridological research
[edit]- New fossil material of Nemejcopteris haiwangii, providing evidence of climbing on Psaronius tree hosts, is described from Permian strata of the Taiyuan Formation in the Wuda Coalfield (Inner Mongolia, China) by Li et al. (2025).[41]
- Branched networks of tubules interpreted as probable root fossils of herbaceous leptosporangiate ferns are described from the Middle-Upper Triassic strata in Somerset (United Kingdom) by Howson, Tucker & Whitaker (2025).[42]
Conifers
[edit]Cheirolepidiaceae
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Pfeiler, Matsunaga & Atkinson |
Late Cretaceous (Campanian) |
Published online in 2024; the final version of the article naming it was published in 2025. |
|||||
Sp. nov |
Valid |
Kvaček, Mendes & Van Konijnenburg-van Cittert |
Early Cretaceous |
Figueira da Foz Formation |
Published online in 2024; the final version of the article naming it was published in 2025. |
Cupressaceae
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Pfeiler, Ortiz & Tomescu in Pfeiler et al. |
Early Cretaceous (Barremian/Aptian) |
Woody seed cone of a member of Cupressaceae. Genus includes new species A. walkeri. |
||||||
Comb. nov |
(Tan & Zhu) |
Early Cretaceous |
Guyang Formation |
Moved from Elatides araucarioides Tan & Zhu (1982) |
Pinaceae
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Zhu & Wang in Zhu et al. |
Miocene |
Sigri Pyroclastic Formation |
||||||
Sp. nov |
Yin et al. |
Early Cretaceous |
Huolinhe Formation |
||||||
Sp. nov |
Song & Wu in Song et al. |
A pine. |
|||||||
Sp. nov |
Yao & Su in Yao et al. |
Mangkang Basin |
A pine. |
||||||
Sp. nov |
Akkemik & Mantzouka |
Miocene |
A member of the family Pinaceae. |
Podocarpaceae
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Patel, Cantrill & Leslie in Patel et al. |
Miocene |
The type species is D. neocaledonica. |
||||||
Sp. nov |
Conceição et al. |
Conifer research
[edit]- Sagasti et al. (2025) describe conifer wood (likely Cupressinoxylon) from the Upper Jurassic strata in Scotland (United Kingdom), preserving evidence of breakdown of wood by fungal rot, arthropod borings and eventual colonization by plant roots, and representing the first known case of a Jurassic nurse log from the Northern Hemisphere.[54]
- Tian et al. (2025) describe parasitic fungi infecting a podocarpaceous wood specimen from the Lower Cretaceous Yixian Formation (China), and report evidence of tylosis formation in the studied wood interpreted as a defense response to the fungal infection.[55]
Gnetophyta
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Song & Wu in Li et al. |
Early Cretaceous |
A species of Ephedra. |
Flowering plants
[edit]Magnoliids
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Bhatia & Srivastava |
Oligocene |
A species of Cryptocarya. |
||||||
Sp. nov |
Valid |
Akkemik & Üner |
Late Oligocene–Early Miocene |
İstanbul Formation |
Fossil wood of a member of the family Lauraceae. |
||||
Comb. nov |
(Petriella) |
Paleocene |
Cerro Bororó Formation |
Moved from Bridelioxylon americanum Petriella (1972). |
|||||
Gen. et sp. nov |
Pujana et al. |
Late Cretaceous |
Antarctica |
Fossil wood of a member of the family Lauraceae. Genus includes new species L. oliveroi. |
|||||
Sp. nov |
Valid |
Kunzmann et al. |
Eocene |
A species of Magnolia. Published online in 2024; the final version of the article naming it was published in 2025. |
|||||
Comb. nov |
Valid |
(Engelhardt) |
Miocene |
A species of Magnolia; moved from Livistona geinitzii Engelhardt (1870). |
Magnoliid research
[edit]- Beurel et al. (2025) study the phylogenetic affinities of Nothophylica piloburmensis, and recover it as a member of Laurales related to the families Lauraceae and Hernandiaceae.[63]
Monocots
[edit]Alismatales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Yamada |
Miocene |
Morozaki Group |
Seagrass with probable affinities with Cymodoceaceae. Genus includes new species M. aichiensis. |
|||||
Comb. nov |
Valid |
(Dusén) |
Paleocene |
Cross Valley-Wiman Formation |
Antarctica |
A species of Potamogeton. |
|||
Sp. nov |
Yamada |
Miocene |
Morozaki Group |
Seagrass with probable affinities with Hydrocharitaceae. |
|||||
Sp. nov |
Panti in Panti et al. |
Miocene |
Seagrass belonging to the family Hydrocharitaceae. |
Arecales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Kumar & Khan in Kumar, Spicer & Khan |
Fossil wood of a member of the family Arecaceae belonging to the subfamily Coryphoideae and the tribe Trachycarpeae. |
|||||||
Sp. nov |
Valid |
Kumar & Khan in Kumar, Spicer & Khan |
Cretaceous-Paleocene (Maastrichtian-Danian) |
Deccan Intertrappean Beds |
Root mat of a member of the family Arecaceae belonging to the subfamily Arecoideae. |
Liliales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Iglesias et al. |
Paleocene |
Cross Valley-Wiman Formation |
Antarctica |
A species of Ripogonum. |
Poales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Bhatia & Srivastava in Bhatia et al. |
Pleistocene |
A species of Chimonobambusa. |
||||||
Gen. et sp. nov |
Bhatia & Srivastava in Bhatia et al. |
Miocene |
A bamboo. The type species is V. neyvelinensis. |
Monocot research
[edit]- Evidence from a fossil-calibrated phylogeny of palms, indicating that diversification rates of palms changed during global warming and cooling events from the mid-Cretaceous to the end of the Oligocene, is presented by Yao et al. (2025).[70]
- Khan et al. (2025) describe fossil material of palms with one metaxylem vessel in each fibrovascular bundle from the Maastrichtian-Danian Deccan Intertrappean Beds (India), and interpret the studied fossils as Cocos-type palms belonging to the subfamily Arecoideae that likely grew in a tropical rainforest.[71]
- Evidence from the study of phytoliths from the Giraffe locality (Northwest Territories, Canada), indicative of presence of palms close to the Arctic Circle over an extensive period of time during the Eocene (approximately 48 million years ago), is presented by Siver et al. (2025).[72]
- Jacobs et al. (2025) describe phytoliths of members of Pharoideae from the Miocene strata in Ethiopia and a leaf with similarities to leaves of extant members of the genera Leptaspis and Scrotochloa from the Miocene strata in Kenya, providing evidence of presence of the group in African forests by the early Miocene.[73]
Basal eudicots
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Kumar, Manchester & Khan |
A member of the family Menispermaceae. |
|||||||
Gen. et sp. nov |
Carpenter & McLoughlin |
Paleogene |
A member of the family Proteaceae. The type species is P. araucoensis. |
||||||
Sp. nov |
Manchester |
Paleocene |
A species of Tetracentron. |
Superasterids
[edit]Apiales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Pan et al. |
Miocene |
A species of Astropanax. |
||||||
Gen. et sp. nov |
Wilf |
Eocene (Ypresian) |
Leaf fossils of a member of the family Araliaceae. The type species is C. canessae. |
||||||
Gen. et sp. nov |
Wilf |
Eocene (Ypresian) |
Huitrera Formation |
Infructescence of a member of the family Araliaceae. The type species is D. christophae. |
Aquifoliales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Niu in Niu et al. |
Miocene |
Foluo Formation |
A holly. |
Ericales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Tiffney et al. |
Paleocene |
A fossil fruits with closest similarity to fruits of members of the family Ericaceae. Genus includes new species S. scottii. |
||||||
Sp. nov |
(Ludwig) |
Miocene |
Sapindus lignitum Unger (1860) |
A species of Sideroxylon; moved from Trapa globosa Ludwig (1860). |
|||||
Comb. nov |
(Ludwig) |
Miocene |
A species of Sideroxylon; moved from Taxus margaritifera Ludwig (1860). |
||||||
Sp. nov |
Martinetto et al. |
Miocene and Pliocene |
A species of Sideroxylon. |
Gentianales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Alvarado-Cárdenas et al. |
Miocene |
A member of the family Apocynaceae. The type species is M. endressiorum. |
Icacinales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Hung, Huang & Li in Hung et al. |
Miocene |
A species of Miquelia. |
Superrosids
[edit]Fabales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Wu et al. |
Paleocene |
Sanshui Basin |
A species of Bauhinia sensu lato. |
|||||
Sp. nov |
Zhao, Wang & Huang in Zhao et al. |
A species of Peltophorum. |
|||||||
Sp. nov |
Cao & Xie in Cao et al. |
Miocene |
A species of Pueraria. |
Fagales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Manchester et al. |
Paleocene |
A member of the family Fagaceae. Genus includes new species H. nixonii. |
||||||
Sp. nov |
Valid |
Çelik |
Miocene |
Hançili Formation |
A member of the family Myricaceae. |
||||
Sp. nov |
Huang & Jia in Huang et al. |
Eocene |
A species of Ostrya. |
Malpighiales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Huang & Jia in Tang et al. |
Miocene |
A species of Calophyllum. |
||||||
Sp. nov |
Siegert, Gandolfo & Wilf |
Eocene |
A species of Tetrapterys. |
||||||
Sp. nov |
Ali, Patel & Khan in Ali et al. |
Eocene |
A species of Thryallis. |
Malvales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Geier & Schönenberger in Geier et al. |
Oligocene (Chattian) |
Enspel Formation |
A species of Tilia. |
Rosales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Gentis et al. |
Paleogene |
A member of the family Moraceae. Genus includes A. ficoides |
||||||
Sp. nov |
Gentis et al. |
Paleogene |
A member of the family Moraceae. |
||||||
Sp. nov |
Valid |
Wheeler, Manchester & Baas |
Eocene |
A species of Prunus. |
Sapindales
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Xiao & Wang in Dong et al. |
Miocene |
Hannuoba Formation |
A maple. |
|||||
Sp. nov |
Gentis et al. |
Paleogene |
|||||||
Sp. nov |
Bhatia & Srivastava |
Oligocene |
Tikak Parbat Formation |
A species of Nothopegia. |
|||||
Sp. nov |
Bhatia & Srivastava |
Oligocene |
Tikak Parbat Formation |
A species of Nothopegia. |
|||||
Comb. nov |
Valid |
(Gregor) |
Miocene |
A species of Zanthoxylum; moved from Toddalia maii Gregor (1975). |
|||||
Comb. nov |
Valid |
(Reid) |
Miocene |
A species of Zanthoxylum; moved from Martya naviculaeformis Reid (1923). |
|||||
Comb. nov |
Valid |
(Czeczott & Skirgiełło) |
Miocene |
A species of Zanthoxylum; moved from Sapoticarpum turovense Czeczott & Skirgiełło (1975). |
Superrosid research
[edit]- Ali et al. (2025) describe a gland-bearing petal of cf. Mcvaughia sp. from the Eocene Palana Formation (India), interpreted as possible evidence that members of the lineage of the studied plant already had volatile glands used to attract pollinators (possibly anthophorid bees) in the early Eocene.[98]
- Hazra & Khan (2025) report the discovery of a diverse assemblage of legume fruits and leaflet remains from the Rajdanda Formation (India), interpreted as evidence of the presence of a warm and humid tropical environment during the Pliocene.[99]
- A study on the anatomy of wood of extant members of the genus Ficus and fossil wood with affinities to Ficus, and on its implications for determination of the organs preserved as fossil wood and their habits, is published by Monje Dussán, Pederneiras & Angyalossy (2025).[100]
- Hamersma et al. (2025) revise Sahnianthus parijai from the Deccan Intertrappean Beds, interpret it as a member or a relative of the family Lythraceae, and identify Chitaleypushpam mohgaonense, Deccananthus savitrii, Raoanthus intertrappea, Flosfemina intertrappea, Flosvirulis deccanensis, Menispermaceopushpam amanganjii, Liliaceopushpam deccanii, Lythraceopushpam mohgaoense and Surangepushpam deccanii as junior synonyms of S. parijai.[101]
- A leaf of Swintonia floribunda, representing the oldest record of the genus Swintonia reported to date, is described from the Oligocene Tikak Parbat Formation (India) by Bhatia & Srivastava (2025), who interpret this finding as supporting the Gondwanan origin of the Anacardiaceae.[102]
- The first fossil material assigned to a living endangered tropical tree species (Dryobalanops rappa) is described from the Plio-Pleistocene strata from Brunei by Wang et al. (2025).[103]
Other angiosperms
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Zolina, Golovneva & Grabovskiy |
Late Cretaceous–Paleocene (Maastrichtian–Danian) |
Tanyurer Formation |
A flowering plant with similarities to members of the genus Menispermum. |
|||||
Gen. et sp. nov |
Puebla & Prámparo |
Early Cretaceous |
An early flowering plant, possibly with affinities with Ranunculales. The type species is S. meridionalis. |
General angiosperm research
[edit]- A study on the timing of the evolution of the flowering plants is published by Ma et al. (2025), who recover the crown group of the flowering plants as likely originating in the Triassic.[106]
- Clark & Donoghue (2025) study the impact of interpretations of the plant fossil record on molecular clock estimates of the timing of origin of the flowering plants, and estimate that the crown group of the flowering plants diverged in the Late Jurassic–Early Cretaceous interval.[107]
- Ding et al. (2025) review fossil and molecular evidence of origin and development of floras dominated by flowering plants, and identify five major phases of the studied process.[108]
- Mendes et al. (2025) study the ultrastructure of pollen of Saportanthus, interpret the studied angiosperm as the sister taxon of monocots, and support placement of Jamesrosea and Lovellea within Laurales.[109]
- Doughty et al. (2025) use a mechanistic model to study the relationship between seed size of flowering plants, their light environment and the size of animals in their environment, and predict a rapid increase of seed size during the Paleocene that eventually plateaued or declined, likely as a result of the appearance of large herbivores that opened the understory, reducing the competitive advantage of plants with large seeds.[110]
- Cham et al. (2025) develop a method for reconstructing the rate of carbon assimilation in leaves, and apply it to Miocene flowering plants from the Clarkia fossil beds (Idaho, United States).[111]
- Evidence from the study of leaves of extant trees from the Nantahala National Forest (North Carolina, United States), indicative of utility of analyses of leaf traits for reconstructions of successional dynamics of fossil plants, is presented by Lowe et al. (2025).[112]
Other plants
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Li et al. |
Carboniferous (Mississippian) |
|||||||
Gen. et sp. nov |
Villalva & Gnaedinger |
Triassic |
Cañadón Largo Formation |
A microsporangiate cone of a member of Peltaspermales. Genus includes new species B. scytoconnexus. |
|||||
Gen. et sp. nov |
Valid |
Jiang et al. |
Jurassic |
Fossil wood of a corystosperm. The type species is F. sinense. |
|||||
Sp. nov |
Nosova et al. |
Early Cretaceous (Aptian–Albian) |
Balyktakh Formation |
A cupule-bearing seed cone of a member of Doyleales. |
|||||
Sp. nov |
Frolov, Enushchenko & Mashchuk |
Early Jurassic |
A member of Ginkgoales belonging to the family Karkeniaceae. |
||||||
Gen. et sp. nov |
Šimůnek & Haldovský |
Carboniferous (Bashkirian) |
A member of Callistophytales. The type species is N. scandens. |
||||||
Sp. nov |
Correia & Góis-Marques |
A progymnosperm belonging to the group Noeggerathiales. |
|||||||
Sp. nov |
Nosova et al. |
Early Cretaceous (Aptian–Albian) |
Balyktakh Formation |
Leaves associated with Jarudia borealis. |
|||||
Nom. nov |
Philippe et al. |
A replacement name for Araucarioxylon australe Crié. |
|||||||
Sp. nov |
Barbacka & Pacyna in Barbacka et al. |
Late Jurassic (Kimmeridgian) |
Skarbek Oolitic Limestone |
A gymnosperm belonging to the family Pseudotorelliaceae. |
|||||
Gen. et sp. nov |
Valid |
Hunt et al. |
Permian |
A plant of uncertain affinities. The type species is Q. yamiae. |
|||||
Sp. nov |
Zhang et al. |
Permian (Wuchiapingian) |
|||||||
Sp. nov |
Prado, Marques-de-Souza & Iannuzzi |
Carboniferous–Permian (Gzhelian–Asselian) |
Itararé Group |
A gymnosperm seed of uncertain affinities. |
|||||
Sp. nov |
Wang & Wan in Wang et al. |
A cordaitalean. |
|||||||
Gen. et sp. nov |
Valid |
Wang et al. |
Devonian (Famennian) |
An ovule of a seed plant of uncertain affinities. Genus includes new species S. octa. |
|||||
Gen. et sp. nov |
DiMichele et al. |
Permian |
Abo Formation |
A tracheophyte of uncertain affinities. Genus includes new species S. cancellarei. |
|||||
Gen. et sp. nov |
Gastaldo |
Carboniferous (Viséan) |
A probable pteridosperm. Genus includes new species S. milowensis. |
||||||
Gen. et sp. nov |
Valid |
Foraponova |
Permian |
Dispersed cuticles with similarities to probable conifer cuticles from the Permian of Jordan assigned to the genus Cryptokerpia. Genus includes new species T. gomankovii. |
|||||
Gen. et sp. nov |
Wang, Lei & Fu |
Permian (Asselian) |
Lower Shihhotse Formation |
A plant of uncertain affinities, with similarities to the flowering plants. The type species is Y. juvenilis. |
|||||
Gen. et sp. nov |
Li et al. |
Devonian (Famennian) |
Wutong Formation |
A seed plant belonging to the group Lagenospermopsida and to the family Elkinsiaceae. The type species is Z. biloba. |
Other plant research
[edit]- Kocheva et al. (2025) study the composition of compressions of the Orestovia-like plants, and do not exclude the possibility that such fossils represent higher plants rather than algae.[132]
- Krings (2025) identifies epidermal cells of Rhynia gwynne-vaughanii from the Devonian Rhynie chert (United Kingdom) with wall appositions encasing invasive fungal hyphae, representing the oldest record of such defense mechanism in plants reported to date.[133]
- Huang & Zhang (2025) revise the holotype specimen of Zosterophyllum spathulatum from the Devonian Xujiachong Formation as a specimen of Adoketophyton subverticillatum, expanding known geographical range of the genus Adoketophyton.[134]
- Doran & Tomescu (2025) identify emergences with possible rooting function in Psilophyton crenulatum from the Devonian Val d'Amour Formation (New Brunswick, Canada), potentially representing the oldest euphyllophyte rooting structures reported to date.[135]
- A study on wood anatomy of Devonian euphyllophytes from the Battery Point Formation (Quebec, Canada) is published by Casselman & Tomescu (2025), who identify secondary xylem metrics that allow for distinguishing between different euphyllophyte taxa.[136]
- The first description of the stomatal structure of Odontopteris schlotheimii is published by Šimůnek & Cleal (2025).[137]
- Description of reproductive structures of members of Umkomasiaceae from the Triassic Cañadón Largo Formation (Argentina) is published by Villalva & Gnaedinger (2025), who determine the relationships between the studied structures and fronds.[138]
- A study on the epidermal anatomy of Pterophyllum ptilum from the Upper Triassic Xujiahe Formation (China) is published by Lu et al. (2025).[139]
- Partial leaf representing the first record of a fossil Cycas from Australia is described from the Miocene Stuarts Creek site by Greenwood, Conran & West (2025).[140]
Palynology
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Peyrot et al. |
Triassic |
|||||||
Sp. nov |
Peyrot et al. |
Triassic |
Babulu Formation |
||||||
Sp. nov |
Peyrot et al. |
Triassic |
Babulu Formation |
||||||
Nom. nov |
DeBenedetti et al. |
Late Cretaceous-Paleocene (Maastrichtian-Danian) |
Sparganiaceaepollenites annulatus Thakre et al. 2024 (junior homonym of S. annulatus De Benedetti, 2023). |
Fossil pollen; a replacement name for Sparganiaceaepollenites reticulatus Samant et al. (2022). |
|||||
Nom. nov |
DeBenedetti et al. |
Miocene |
Fossil pollen; a replacement name for Sparganiaceaepollenites microreticulatus Grabowska & Ważyńska (2009). |
||||||
Gen. et sp. nov |
Strother et al. |
Ordovician (Hirnantian) |
Zygospores of a member of the family Zygnemataceae. The type species is S. divericata. |
||||||
Sp. nov |
Zhan et al. |
Triassic |
A lycopsid megaspore. |
||||||
Sp. nov |
Strother et al. |
Ordovician (Hirnantian) |
Sarah Formation |
Zygospores of a member of the genus Zygnema. |
Palynological research
[edit]- Wang, Sun & Shi (2025) study the composition of palynological assemblages from the Roadian Lucaogou and Hongyanchi formation, Capitanian Quanzijie Formation and Wuchiapingian Wutonggou Formation (China), and interpret changes in composition of the studied assemblages through time as consistent with extinction on the background level during the Capitanian mass extinction event.[145]
- Nhamutole et al. (2025) study the composition of palynological assemblages from the Permian (Lopingian) strata of the Maniamba Basin (Mozambique), reporting evidence of the presence of plants indicative of lowland fluvial setting.[146]
- Hotton et al. (2025) study the composition of the late Permian palynoflora from the Spearfish Formation (South Dakota, United States), providing evidence of similarities with the Lopingian palynofloras from Europe and evidence of spread of xerophytic flora across low-latitude Pangaea at that time.[147]
- Evidence from the study of palynological assemblages from the South Chinese Meishan section, indicative of presence of persistent gymnosperm-dominated vegetation during the Permian-Triassic transition, is presented by Schneebeli-Hermann & Galasso (2025).[148]
- Evidence from the study of palynofloral assemblages from the Germig Section (Qinghai-Tibetan Plateau; Tibet, China), interpreted as indicative of a shift from floras dominated by seed ferns and conifers to floras dominated by cheirolepids during the Triassic-Jurassic transition, is presented by Li et al. (2025).[149]
- A study on palynofloral assemblages from the Lower Jurassic Rodiles Formation (Spain), providing evidence of presence of arid environment with Cheirolepidiaceae-dominated forests before the Toarcian Oceanic Anoxic Event, shift to a more humid environment and a fern-dominated flora during this event and return of drier conditions and Cheirolepidiaceae forests after the event, is published by Fernández-Rial et al. (2025).[150]
- Description of the palynological assemblage from the Middle Jurassic Challacó Formation (Argentina), including a Mesozoic record of the otherwise Proterozoic to Paleozoic taxon Gloeocapsomorpha, is presented by Olivera et al. (2025).[151]
- Zhang et al. (2025) study the composition of the Valanginian palynoflora from the Sao Khua Formation (Thailand), providing evidence of presence of a flora dominated by Cheirolepidiaceae growing in a humid subtropical climate with periodic arid seasons.[152]
- Tricolpate pollen, identified as pollen of flowering plants belonging to the eudicot clade, is described from the Barremian strata from nearshore marine sediments in the Lusitanian Basin (Portugal) by Gravendyck et al. (2025).[153]
- A study on the composition of the gymnosperm-dominated palynoflora from the Lower Cretaceous strata from the Koonwarra fossil bed (Australia) is published by Vajda et al. (2025).[154]
- Evidence from the study of palynological assemblages from the Barremian–Aptian Gippsland Basin and the Albian Otway Basin (Victoria, Australia), indicative of a high-rainfall regime of a floral turnover in the studied resulting in different composition of the assemblages from the studied basins, is presented by Korasidis & Wagstaff (2025).[155]
- Hofmann et al. (2025) describe twelve species of the pollen taxon Eucommiidtes from the Lower Cretaceous Rio da Batateira and Crato formations (Araripe Basin, Brazil), providing evidence of greater diversity and abundance of members of Erdtmanithecales in the plant assemblages known from the studied formations than indicated by known macrofossils.[156]
- A study on palynological samples from the lower member of the Aptian-Albian Río Tarde Formation (Argentina), providing evidence of presence of fern, gymnosperms and freshwater algae and evidence of warm and humid climate, is published by Matamala et al. (2025).[157]
- Lin et al. (2025) reconstruct the vegetation and environmental conditions during the early evolution of the Songliao Basin on the basis of pollen and spores from core samples near the base of the Aptian Shahezi Formation (China).[158]
- A new Albian palynoflora dominated by gymnospermous pollen is described from the Binggou Formation (Liaoning, China) by Tan et al. (2025).[159]
- A study on palynofloral assemblages from the Las Loras UNESCO Global Geopark (Spain), providing evidence of gradual shift from conifer-dominated floras to ones with increased presence of flowering plants through the Albian–Cenomanian, is published by Rodríguez-Barreiro et al. (2025).[160]
- Evidence from the study of palynomorph and palynofacies from the Bahariya Formation (Egypt), interpreted as indicative of warm and humid climate during the early-middle Cenomanian with a short episode of semi-arid to arid conditions during the late early Cenomanian, is presented by Abdelhalim et al. (2025).[161]
- Evidence from the study of palynoflora from Deccan Intertrappean Beds in the southeastern part of the Deccan Volcanic Province (India), interpreted as indicating that the onset of Deccan volcanism was favourable for the proliferation of ecosystems dominated by flowering plants, is presented by Samant et al. (2025).[162]
- Vieira & Jolley (2025) describe Classopollis pollen (produced by members of the family Cheirolepidiaceae) from the Paleocene sedimentary rocks of the Antrim Lava Group (Northern Ireland, United Kingdom), and interpret the studied pollen as reworked from Cretaceous strata.[163]
- Evidence from the study of palynological assemblages from the Llanos basin (Colombia), indicative of impact of environmental changes on the diversification of Neotropical plants during the Cenozoic, is presented by de la Parra & Benson (2025).[164]
- Rull (2025) revises purported fossil pollen records of Pelliciera found outside the Neotropics, and argues that only a subset of Cenozoic pollen records from tropical West Africa can be confirmed as likely fossils of members of Pelliciera.[165]
- Evidence from the study of the fossil record of pollen from the Bighorn Basin (Wyoming, United States) and from pollination mode of extant plants related to the fossil taxa, interpreted as indicating that animal pollination became more common during the Paleocene–Eocene Thermal Maximum, is presented by Korasidis et al. (2025).[166]
- A study on the fossil pollen from the Sonari Lignite Mine (Rajasthan, India), providing evidence of changes of composition of the plant assemblage from the studied area during the Paleocene-Eocene transition, is published by Parmar, Singh & Prasad (2025).[167]
- Revision of the fossil pollen of members of Fabales, Rosales, Fagales, Malpighiales, Myrtales, Sapindales, Malvales, Santalales and Caryophyllales from the palynological assemblage from the Eocene Messel Formation (Germany) is published by Bouchal et al. (2025).[168]
- Evidence from the study of fossil pollen from the Dingqinghu Formation (China), indicative of presence of a mixed deciduous and coniferous forest in the central Qinghai-Tibet Plateau during the Oligocene-Miocene transition, is presented by Xie et al. (2025).[169]
- Malaikanok et al. (2025) study the fossil pollen of members of Ericales from the Oligocene-Miocene strata from the Ban Pa Kha Subbasin of the Li Basin (Thailand), identifying 24 different pollen types, and interpret the studied pollen as possible fossil record of different vertical vegetation belts in the mountainous areas.[170]
- Evidence from the study of pollen record from the Zoige Basin, indicative of changes of vegetation in the Tibetan Plateau related to temperature changes during the last 3.5 million years, is presented by Zhao et al. (2025).[171]
- A study on the environment and climate in Java (Indonesia) during the early Pleistocene, based on data from palynological assemblages from the Kalibiuk and Kaliglagah formations, is published by Morley & Morley (2025), who interpret the studied assemblages as indicative of a strongly seasonal climate, and interpret the assemblages from the Kalibuik Formation and the basal Kaliglagah Formation as indicative of presence of a large delta dominated by mangroves, while considering the assemblages from the upper Kaliglagah Formation to be consistent with the presence of a freshwater swamp.[172]
- Evidence from the study of pollen record from the eastern Mainland Southeast Asia, indicative of presence of forest-seasonal savanna mosaics in the studied region during the Last Glacial Maximum, is presented by Lin et al. (2025), who find no evidence of presence of savanna corridors linking the Leizhou Peninsula and Singapore during the Last Glacial Maximum.[173]
General research
[edit]- A study on the floral assemblage from the Permian strata of the East Bokaro Coalfield (India), providing evidence of the presence of a diverse ecosystem of large trees and shrubs, is published by Dash et al. (2025).[174]
- Kock & Bamford (2025) study growth rings in fossil woods from the Permian Beaufort Group (South Africa), and interpret their findings as indicative of a stable climate with no significant differences between the middle and late Permian.[175]
- Ferraz et al. (2025) report the discovery of a diverse plant association in the Guadalupian strata from the Cerro Chato outcrop (Paraná Basin, Brazil).[176]
- Evidence of changes of composition of gigantopterid-dominated rainforests known from the Longtan Formation (China) during the Lopingian is presented by Shu et al. (2025), who also report evidence of the presence of climbing structures in Gigantonoclea.[177]
- Evidence from the study of fossil material from the South Taodonggou Section in the Turpan-Hami Basin (China), interpreted as indicative of presence of a refugium of land vegetation that preserved the stability of food chains during the Permian–Triassic extinction event and might have been one of the source regions for the diversification of terrestrial life in the aftermath of the extinction event, is presented by Peng et al. (2025).[178]
- Evidence of a staggered recovery of plant communities from the Sydney Basin (Australia) in the aftermath of the Permian–Triassic extinction event, indicative of the presence of a succession gymnosperm-dominated and lycophyte-dominated plant communities lasting until the early Middle Triassic, is presented by Amores et al. (2025).[179]
- Xu et al. (2025) link prolonged high CO2 levels and extreme hothouse climate during the Early Triassic to losses of terrestrial vegetation during the Permian–Triassic extinction event.[180]
- McLoughlin, Vajda & Crowley (2025) determine the flora from the upper part of the Red Cliff Coal Measures (New South Wales, Australia) to be late Norian in age, and interpret the entirety of Ipswich Coal Measures as likely to be Norian.[181]
- A study on the composition of plant assemblages from the Astartekløft and South Tancrediakløft localities (Jameson Land, Greenland), providing evidence of a floristic turnover during the Triassic-Jurassic transition, is published by Knetge et al. (2025).[182]
- Quiroz-Cabascango et al. (2025) report the discovery of a new plant assemblage dominated by ginkgoopsids, cheirolepid conifers and ferns from the Hettangian Helsingborg Member of the Höganäs Formation (Sweden), providing evidence of recovery of vegetation in the aftermath of the Triassic–Jurassic extinction event.[183]
- Evidence from the study of molecular fossils from the Sangonghe Formation (China), indicative of a shift from a fern-dominated flora to a gymnosperm-dominated one during the Toarcian Oceanic Anoxic Event and eventual return to fern dominance, is presented by Wang et al. (2025).[184]
- A study on the composition of the Middle Jurassic plant assemblage from the Khamarkhoovor Formation (Mongolia) is published by Muraviev et al. (2025).[185]
- Chen et al. (2025) identify seven types of gymnosperm (including bennettitalean and conifer) cuticles from the Middle Jurassic (Bathonian) flora from the Arda Formation (Jordan), and report evidence of similarities of the studied flora to other Jurassic floras from the Middle East.[186]
- Evidence of the presence of a plant community dominated by ferns belonging to the family Osmundaceae, similar to extant plant communities such as those from swamp settings from the Parana Forest in northeastern Argentina, is reported from the Jurassic La Matilde Formation (Argentina) by García Massini et al. (2025).[187]
- A diverse assemblage of opalized plant fossils is described from the Cretaceous (Albian–Cenomanian) Griman Creek Formation (Australia) by McLoughlin et al. (2025).[188]
- Coiffard et al. (2025) revise the Cenomanian flora from the Bahariya Formation (Egypt) on the basis of the study of known and new fossil leaves, and identify three distinct floral associations.[189]
- Silva et al. (2025) study the taphonomy of exceptionally preserved plant remains from the Upper Cretaceous Santa Marta Formation (Antarctica).[190]
- Stiles et al. (2025) reconstruct the evolutionary history of vegetation in Argentine Patagonia during the Cenozoic on the basis of phytoliths from the San Jorge Basin, reporting evidence of presence of lowland humid megathermal forests from Paleocene to the middle Eocene, colder, more arid climate and more open vegetation beginning between the middle and late Eocene, return of humid forests and increased abundance of grasses between the early and middle Miocene, and rise of Patagonian steppe vegetation between the middle Miocene and the Quaternary.[191]
- Evidence from the study of phytoliths from the Lunpola Basin of the Qinghai–Tibetan Plateau, interpreted as indicative of presence mixed coniferous and broad-leaved forest during the late Oligocene–Early Miocene, is presented by Zhang et al. (2025).[192]
- A study on the timing of the uplift of the Lhasa and Qiangtang terranes, based on composition of fossil plant communities from the Qinghai–Tibet Plateau (China), is published by Lai et al. (2025).[193]
- Evidence indicating that climate and geographic changes in the Miocene resulted in vegetation changes that in turn caused climate change feedbacks that impacted cooling and precipitation changes during the late Miocene climate transition is presented by Zhang et al. (2025).[194]
- Evidence from the study of plant macrofossils and palynoflora from the Pisco Formation (Peru), indicative of presence of a diverse dry forest biome in the area of present-day coastal Peruvian desert during the Miocene, is presented by Ochoa et al. (2025).[195]
- A study on ancient DNA from sediment cores from lakes in Alaska and Siberia, providing evidence of plant extinctions associated with environmental changes during the Pleistocene–Holocene transition, is published by Courtin et al. (2025).[196]
- Evidence of changes of the upper range limit of trees in the Tibetan Plateau since the Last Glacial Maximum, and of a relationship between those changes and pattern of beta diversity of the studied flora, is presented Xu et al. (2025).[197]
- El-Saadawi et al. (2025) present an annotated catalog of plant macrofossil remains from Egypt, including fossils ranging from Devonian to Quaternary.[198]
- Jardine, Morck & Lomax (2025) compare the utility of morphological traits which might be proxies for genome size of fossil plants, and report evidence of a robust relationship between genome size and guard cell length in plants.[199]
- Liu et al. (2025) review the development and application of artificial intelligence in paleobotany and palynology from the 1980s to 2025.[200]
References
[edit]- ^ Zavattieri, A. M.; Gutiérrez, P. R. (2025). "Freshwater green algae and fungi from Upper Triassic strata of the Cuyana Basin, central-western Argentina: indicators of palaeoenvironment and petroleum source potential". Alcheringa: An Australasian Journal of Palaeontology. doi:10.1080/03115518.2025.2492230.
- ^ Liu, L.; Han, J.; Zhang, Z.; Tang, Q.; Pang, K.; Li, R.; Wu, Y.; Hua, H.; Guo, B.; Cai, C.; Riding, R. (2025). "Ordovician marine Charophyceae and insights into land plant derivations". Nature Plants: 1–11. doi:10.1038/s41477-025-02003-y. PMID 40447741.
- ^ a b LoDuca, S. T. (2025). "New species of noncalcified dasycladalean and bryopsidalean macroalgae and a new occurrence of Thalassocystis striata (Chlorophyta) from the Silurian (Llandoverian) of Michigan". Journal of Paleontology: 1–14. doi:10.1017/jpa.2025.10132.
- ^ Zhu, L.-Y.; Zhang, H.; Shi, T.-M.; Tang, P. (2025). "A possible biotic precursor, Archaeodunaliella junggarensis n. gen. n. sp., in the Upper Paleozoic Fengcheng Formation from Junggar Basin, Northwest China". Palaeoworld. doi:10.1016/j.palwor.2025.200936.
- ^ a b Sun, Q.; Schlagintweit, F.; Li, X. (2025). "New records of Dasycladales (green algae) from the Aptian-Albian Langshan Formation of Tibet". Comptes Rendus Palevol. 24 (20): 381–395. doi:10.5852/cr-palevol2025v24a20.
- ^ Schlagintweit, F.; Xu, Y.; Zhang, S. (2025). "Calcareous green algae (Dasycladales, Halimedaceae) from the Upper Cretaceous of the western Tarim Basin, NW China: Systematic palaeontology, microfacies, and palaeobiogeographic significance". Carnets Geol. 25 (4): 89–108. doi:10.2110/carnets.2025.2504.
- ^ a b Barattolo, F.; Bucur, I. I.; Ţibuleac, P.; Girardi, G. (2025). "Ontogeny and mineralization in Dasycladales: the case of two new species of triploporellaceans (green algae, Dasycladales) from the Lower Cretaceous Rarău Syncline (Romania)". Journal of Paleontology. 99 (1): 26–54. doi:10.1017/jpa.2024.71.
- ^ Vinn, O.; Madison, A.; Isakar, M.; El Hedeny, M.; Alkahtane, A. A.; Alfarraj, S. (2025). "A new modern Hydrolithon-like coralline red alga from the Upper Ordovician of Estonia". Proceedings of the Geologists' Association. doi:10.1016/j.pgeola.2025.101127.
- ^ a b Sheng, Q.; Brenckle, P. (2025). "Serpukhovian (Upper Mississippian) red algae from the type Mississippian region of southern Illinois, U.S.A". Review of Palaeobotany and Palynology. 105362. doi:10.1016/j.revpalbo.2025.105362.
- ^ Wang, J.-J.; Gong, E.-P.; Zhang, Y.-L.; Huang, W.-T.; Li, X.; Wang, L.-F.; Lai, G.-M.; Li, D.-P. (2025). "The role of algal reproduction in phylloid algal buildups: A case study in Pennsylvanian Phylloid algae in southern Guizhou, China". Journal of Palaeogeography. doi:10.1016/j.jop.2025.02.002.
- ^ a b c Tan, Z.-Z.; Cui, Y.-M.; Saing, L. M.; Li, C.-X.; Li, Y. (2025). "Systematics and Palaeoecology of Three New Acrocarpous Mosses from the Mid-Cretaceous of Kachin, Myanmar". Plants. 14 (14) 2124. doi:10.3390/plants14142124.
- ^ Ignatov, M. S.; Vasilenko, D. V.; Legalov, A. A.; Perkovsky, E. E. (2025). "Mosses from Rovno amber (Ukraine), 6. New genus of the family Pylaisiadelphaceae". Ecologica Montenegrina. 89: 87–97. doi:10.37828/em.2025.89.4.
- ^ a b c Wolski, G. J. (2025). "A new species of the genus Sematophyllites J.-P.Frahm (Sematophyllaceae Broth.) from Baltic amber". Herzogia. 38 (1): 147–155. doi:10.13158/heia.38.1.2025.147.
- ^ Valois, M.; Blanco-Moreno, C.; Bippus, A. C.; Stockey, R. A.; Rothwell, G. W.; Tomescu, A. M. F. (2025). "The state of the art on tricostate mosses, with description of a new species of Tricostaceae". Taxon. 74 (1): 155–173. doi:10.1002/tax.13292.
- ^ a b Flores, J. R.; Cariglino, B. (2025). "Corsiniopsis kurtzii gen. et sp. nov., a new fertile marchantioid fossil from the Late Triassic of Argentina provides evidence of the evolutionary trends of fertile branches in the complex thalloid liverworts". Annals of Botany. doi:10.1093/aob/mcae199. PMID 40119645.
- ^ a b Feldberg, K.; Kaasalainen, U.; Mamontov, Y. S.; Gradstein, S. R.; Schäfer-Verwimp, A.; Divakar, P. K.; Schmidt, A. R. (2025). "Extending the fossil record of Miocene neotropical epiphyte communities". Fossil Record. 28 (1): 79–102. doi:10.3897/fr.28.137758.
- ^ a b Paulsen, M.; Ohlsen, D.; Cantrill, D. J.; Stilwell, J. (2025). "Eocene liverwort and moss species preserved in Anglesea amber from Australia". Review of Palaeobotany and Palynology. 338. 105330. doi:10.1016/j.revpalbo.2025.105330.
- ^ Katagiri, T. (2025). "Plagiochila ikiensis (Plagiochilaceae), a new species of leafy liverwort from the Miocene formation of Iki Island, Nagasaki Prefecture, Japan". Hattoria. 16: 99–110. doi:10.18968/hattoria.16.0_99.
- ^ Song, X.; Ye, W.; Wang, Z. (2025). "A New Species of Radula (Radulaceae, Porellales) From Mid-Cretaceous Kachin Amber". Ecology and Evolution. 15 (8) e72007. doi:10.1002/ece3.72007. PMC 12353877. PMID 40823047.
- ^ Veselá, V.; Svobodová, M.; Kadlecová, V.; Dašková, J.; Kvaček, J. (2025). "The taphonomic puzzle of Notothylacites filiformis: reinterpretation of bryophyte fossils from the Late Cretaceous of Czechia reveals co-occurrence of hornworts and liverworts". Annals of Botany mcaf219. doi:10.1093/aob/mcaf219. PMID 40926531.
- ^ Blanco-Moreno, C.; Bippus, A. C.; Tomescu, A. M. F. (2025). "How do the principal megabiases in the fossil record affect the discovery of past bryophyte diversity?". Annals of Botany. doi:10.1093/aob/mcaf070.
- ^ Carniere, J. S.; Pozzebon-Silva, Â.; Spiekermann, R.; Leandro, L. M.; Guerra-Sommer, M.; Uhl, D.; Jasper, A. (2025). "Franscinella riograndensis (Salvi et al.) gen. nov. et comb. nov.: The first record of a lycopsid with in situ spores for the Permian strata of the Paraná Basin, Brazil". Review of Palaeobotany and Palynology. 105401. doi:10.1016/j.revpalbo.2025.105401.
- ^ López-García, A. G.; Schmidt, A. R.; Serguera, M.; Regalado, L. (2025). "First record of Selaginella from Miocene amber". Fossil Record. 28 (1): 57–66. doi:10.3897/fr.28.e138310.
- ^ Gensel, P.; Milano, A.; Willoughby, A.; Belcher, J. (2024). "A new zosterophyll with novel emergence and cuticle features from the Early Devonian of New Brunswick, Canada". International Journal of Plant Sciences. 186 (3): 152–166. doi:10.1086/734304.
- ^ Huang, P.; Wang, J.-S.; Wang, Y.-L.; Liu, L.; Zhao, J.-Y.; Xue, J.-Z. (2025). "The smallest Zosterophyllum plant from the Lower Devonian of South China and the divergent life-history strategies in zosterophyllopsids". Proceedings of the Royal Society B: Biological Sciences. 292 (2038). 20242337. doi:10.1098/rspb.2024.2337. PMC 11732410. PMID 39809313.
- ^ Zavialova, N.; Polevova, S. (2025). "Multilamellated zones in the sporoderm of heterosporous lycopsids: adaptive trait or evolutionary spandrel?". Annals of Botany mcaf218. doi:10.1093/aob/mcaf218.
- ^ D'Antonio, M. P. (2025). "Convergent evolution of the developmental anatomy of leaf abscission: evidence from the arboreous lycopsid Sigillaria". Annals of Botany mcaf188. doi:10.1093/aob/mcaf188.
- ^ Rößler, R.; Merbitz, M.; Vogel, B.; Noll, B. (2025). "Gymnospermous wood anatomy in a new calamitalean – Arthropitys raimundii sp. nov. from the early Permian of Chemnitz, central-east Germany". Palaeontographica Abteilung B. 306 (1–4): 1–17. doi:10.1127/palb/2024/0084.
- ^ Hiller, P.; Cheng, Y.; Bomfleur, B. (2025). "Claytosmunda basilica sp. nov. (Osmundaceae) and the rise of crown-group royal ferns in Gondwanan high latitudes". Annals of Botany mcaf150. doi:10.1093/aob/mcaf150. PMID 40668964.
- ^ Li, F.-Y.; Tan, X.; Xiu, Y.-Y.; Liu, W.-T.; Chen, M.-Y.; Tian, N. (2025). "Study on macro- and sporemorphology of a new species of Coniopteris (Dicksoniaceae) from the Middle Jurassic of western Liaoning, Northeast China". Review of Palaeobotany and Palynology. 105312. doi:10.1016/j.revpalbo.2025.105312.
- ^ Rodriguez Rizk, G.; Cariglino, B. (2025). "First record of Cyathocarpus (Marattiales) in Gondwana: A new species from the Permian of Patagonia, Argentina". Review of Palaeobotany and Palynology 105447. doi:10.1016/j.revpalbo.2025.105447.
- ^ a b Hermsen, E. J.; Gandolfo, M. A.; Cúneo, N. R.; de Benedetti, F.; Zamaloa, M. C.; Escapa, I. H. (2025). "Tracing the Evolution of Dicksoniaceae and Thyrsopteridaceae (Cyatheales) in South America: New Records from the Cretaceous". Annals of Botany mcaf228. doi:10.1093/aob/mcaf228. PMID 40973617.
- ^ Jin, P.; Jia, X.; Zhang, M.; Du, B.; Li, A.; Sun, B. (2025). "New horsetail macrofossils from the Lower Cretaceous of the Laiyang Basin, Eastern China, and biogeographic analyses". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2478196.
- ^ D'Antonio, M. P.; Crane, P. R.; Hotton, C. L.; Wittry, J.; Herrera, F. (2025). "Sphenophyllales from the Mazon Creek flora (Upper Moscovian: Illinois, USA)". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boaf043.
- ^ a b c Iglesias, A.; Gallardo, R. A.; Santillana, S.; Silva Bandeira, E. M. (2025). "New plants from the upper Paleocene Cross Valley-Wiman Formation, Marambio (=Seymour) Island, Antarctic Peninsula". Ameghiniana. 62 (2): 144–174. doi:10.5710/AMGH.21.02.2025.3606.
- ^ Li, C.X.; Meng, F.W. (2025). "A New Species of Krameropteris (Dennstaedtiaceae) from Mid-Cretaceous Myanmar Amber". Taxonomy. 5 (1). 3. doi:10.3390/taxonomy5010003.
- ^ Koppelhus, E.; Vera, E. I.; Coria, R. A.; Currie, P. J.; Reguero, M. A. (2025). "A new species of the fossil fern Millerocaulis (Osmundales: Osmundaceae) from the Snow Hill Island Formation (Upper Cretaceous) of James Ross Island, Antarctic Peninsula". Review of Palaeobotany and Palynology. 105337. doi:10.1016/j.revpalbo.2025.105337.
- ^ Aliaga-Castillo, A.; León, B.; Sanín, D.; Martinez, C. (2025). "The phylogenetic position of the fossil: Polystichum espinarensis sp. nov., reveals its relationship with an exindusiate Andean clade". International Journal of Plant Sciences. doi:10.1086/738641.
- ^ Ali, A.; Spicer, R. A.; Su, T.; Kundu, S.; Khan, M. A. (2025). "An Aquatic Pteridophyte, Salvinia, from the Subathu Formation (Late Paleocene–Early Eocene) of Himachal Himalaya, India, and Its Biogeographical Implications". Aquatic Botany. 103916. doi:10.1016/j.aquabot.2025.103916.
- ^ Tian, N.; Sheng, Z.-H.; Li, F.-Y.; Lu, N.; Chen, M.-Y.; Liu, W.-T. (2025). "Shaolinopteris gen. nov., a new fern rhizome genus with solenostele from the Jurassic of Northeast China and its palaeogeographic and taxonomic implications". Journal of Palaeogeography 100292. doi:10.1016/j.jop.2025.100292.
- ^ Li, F.; Li, D.; Votočková Frojdova, J.; Pšenička, J.; Boyce, C. K.; Wang, J.; Zhou, W. (2025). "Climbing habit confirmed in the early Permian zygopterid fern Nemejcopteris haiwangii and its palaeoecological significance". Palaeogeography, Palaeoclimatology, Palaeoecology. 113101. doi:10.1016/j.palaeo.2025.113101.
- ^ Howson, M. P.; Tucker, M. E.; Whitaker, F. F. (2025). "A Triassic semi-arid upland community of herbaceous ferns and rhizophagous arthropods evidenced by trace fossils in rhizogenic calcrete pedorelicts from SW England". Palaeogeography, Palaeoclimatology, Palaeoecology 113221. doi:10.1016/j.palaeo.2025.113221.
- ^ Pfeiler, K. C.; Matsunaga, K. K. S.; Atkinson, B. A. (2024). "Permineralized pollen cones of Classostrobus minutus sp. nov. provide evidence of pollinivory in the extinct conifer family Cheirolepidiaceae during the Late Cretaceous". International Journal of Plant Sciences. 186 (4): 271–281. doi:10.1086/734475.
- ^ Kvaček, J.; Mendes, M. M.; Van Konijnenburg-van Cittert, J. H. A. (2024). "Frenelopsis callapezii, a new cheirolepidiaceous conifer from the Lower Cretaceous (upper Aptian – lower Albian) sedimentary deposits of Lusitanian Basin in western Portugal: systematic and paleoenvironmental implications". International Journal of Plant Sciences. 186 (3): 178–192. doi:10.1086/734301.
- ^ Pfeiler, K.; Bippus, A. C.; Ortiz, A.; Kammet, A. R.; Escapa, I. H.; Tomescu, A. M. F. (2025). "Expanded character sampling inspired by a new Cretaceous conifer seed cone from California: importance of morphology in resolving relationships among the Cupressaceae". Annals of Botany. doi:10.1093/aob/mcaf099. PMID 40465321.
- ^ Xu, X.; Deng, J.; Yang, L.; Zhao, Y.; McLoughlin, S. (2025). "A new species of Stutzeliastrobus (Cupressaceae) from the Early Cretaceous of the Guyang Basin, northern China, and its paleoenvironment implications". Review of Palaeobotany and Palynology. 105353. doi:10.1016/j.revpalbo.2025.105353.
- ^ Zhu, Y.; Tian, N.; Zhang, J.; Wang, Y.; Zouros, N. (2025). "A new record of Lesbosoxylon (Pinaceae) wood with fungal remains from the Lower Miocene of Lesvos, Greece, and its palaeoecological implication". Review of Palaeobotany and Palynology. 105395. doi:10.1016/j.revpalbo.2025.105395.
- ^ Yin, S.-X.; Dong, C.; Pan, B.; Feng, Z.; Hui, J.-G.; Herrera, F.; Herendeen, P. S.; Crane, P. R.; Shi, G.-L. (2025). "A new woody stem of Piceoxylon from the Early Cretaceous of Northeast China and its implications for the early diversification of Pinaceae". Journal of Systematics and Evolution. doi:10.1111/jse.70000.
- ^ Song, Z.-H.; Wang, Z.-E.; Cao, R.; Wang, Z.-S.; Wang, H.; Chen, G.-H.; Wu, J.-Y. (2025). "Fossil wood of Pinus from the Pliocene of western Yunnan, China and its palaeoclimatic implications". Review of Palaeobotany and Palynology. 334. 105279. doi:10.1016/j.revpalbo.2024.105279.
- ^ Yao, X.-R.; Gao, Y.; Yang, R.-D.; Meng, J.-B.; Li, S.-F.; Su, T. (2025). "The late Eocene pine seed cones from Mangkang Basin, southeastern Xizang (Tibet) and their biogeographic significance". Palaeoworld. doi:10.1016/j.palwor.2025.200935.
- ^ Akkemik, Ü.; Mantzouka, D. (2025). "A review of the Early Miocene Pinuxylon species of Türkiye with a new species". Turkish Journal of Botany. 49 (1): 52–63. doi:10.55730/1300-008X.2841.
- ^ Patel, N. U.; Cantrill, D. J.; Crane, P.; Garrouste, R.; Lowry, P. P.; Maurizot, P.; Munzinger, J.; Leslie, A. B. (2025). "Dacrycarpoides, a new genus of extinct Podocarpaceae (Coniferales) from the early Miocene of New Caledonia". American Journal of Botany. e70041. doi:10.1002/ajb2.70041. PMID 40366253.
- ^ Conceição, D. M.; Esperança Júnior, M. G. F.; Gobo, W. V.; Iannuzzi, R.; Batista, M. E. P.; Nascimento Jr., D. R.; Silva Filho, W. F.; Horodysk, R. S.; Bamford, M. K.; Kunzmann, L. (2025). "Unique conifer assemblage from Late Jurassic-Early Cretaceous deposits (NE Brazil) unveils the paleoclimate and paleobiogeography in the interior of equatorial Gondwana". Cretaceous Research. 106099. doi:10.1016/j.cretres.2025.106099.
- ^ Sagasti, A. J.; Burne, S.; Wyman, J.; Hetherington, A. J. (2025). "Decay stages of Jurassic wood debris from Scotland: evidence for the coevolution of fungal rot, arthropods and the nurse log strategy". New Phytologist. doi:10.1111/nph.70515. PMID 40919706.
- ^ Tian, N.; Xie, A.; Wang, Y.; Jiang, Z.; Li, F.; Hao, R. (2025). "A 120-million-year-old fungal parasite from the Cretaceous Jehol Biota". Science Bulletin. doi:10.1016/j.scib.2025.08.014.
- ^ Li, P.; Deng, M.; Hou, C.; Xing, Y. (2025). "A new Ephedra macrofossil from the Early Cretaceous Yixian Formation, Liaoning Province, China and its evolutionary significance". Review of Palaeobotany and Palynology. 105314. doi:10.1016/j.revpalbo.2025.105314.
- ^ Bhatia, H.; Srivastava, G. (2025). "Earliest fossil record of Cryptocarya R. Br. (Lauraceae) from Asia and its biogeographic and palaeoenvironmental implications". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-025-00658-1.
- ^ Akkemik, Ü.; Üner, B. (2025). "A new fossil woody flora of the Late Oligocene-Early Miocene of northwest İstanbul with a new species". Turkish Journal of Earth Sciences. 34 (3): 407–420. doi:10.55730/1300-0985.1966.
- ^ Ruiz, D. P.; Raigemborn, M. S.; Pujana, R. R.; Martínez, L. C. A.; Matheos, S. D.; Brea, M. (2025). "Fossil woods from the early Paleocene of the Cerro Bororó Formation (central Argentine Patagonia): systematics and palaeoenvironmental considerations". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boaf024.
- ^ Pujana, R. R.; Santelli, M. B.; Alvarez, M. J.; Raffi, M. E.; Santillana, S. N. (2025). "Angiosperm fossil woods, Cryptocaryeae (Lauraceae) and Cunoniaceae, with marine borers from Day Nunatak, Western Antarctica (Snow Hill Island Formation, Upper Cretaceous)". Cretaceous Research. 106146. doi:10.1016/j.cretres.2025.106146.
- ^ Kunzmann, L.; Huang, J.; Su, T.; Wu, M.-X.; Zhou, Z.-K. (2025). "A new fossil Magnolia Plum. ex L. (Magnoliaceae) from Eocene Profen-Süd flora in Germany and its paleobiogeographic implications". Palaeontographica Abteilung B. 306 (1–4): 19–76. doi:10.1127/palb/2024/0085.
- ^ a b c d Kowalski, R.; Teodoridis, V.; Utescher, T. (2025). "Update and reassessment of the Miocene carpological flora from the Turów open pit mine of SW Poland and its palaeoenvironmental implications". Acta Palaeobotanica. 65 (1): 40–97. doi:10.35535/acpa-2025-0002.
- ^ Beurel, S.; Bachelier, J. B.; Coiffard, C.; Schmidt, A. R.; Sadowski, E.-M. (2025). "Placing Nothophylica piloburmensis from Cretaceous amber into the angiosperm phylogeny". Taxon. doi:10.1002/tax.13350.
- ^ a b Yamada, T. (2025). "Seagrass fossils from the lower Miocene Morozaki Group in Aichi Prefecture, central Japan". Aquatic Botany. 201. 103913. doi:10.1016/j.aquabot.2025.103913.
- ^ Panti, C.; Cuitiño, J. I.; Noetinger, S.; Perez, D.; Tapia, M. J.; Allende Mosquera, A.; Gutiérrez, D. G.; Barreda, V. D.; Palazzesi, L. (2025). "Tropical seagrasses reached Patagonia during Miocene times". Communications Earth & Environment. 6 564. doi:10.1038/s43247-025-02540-6.
- ^ Kumar, S.; Spicer, R. A.; Khan, M. A. (2025). "Fossil evidence of Trachycarpeae (Arecaceae) from the K-Pg of India and its biogeographic implications". Botany Letters. doi:10.1080/23818107.2025.2502926.
- ^ Kumar, S.; Spicer, R. A.; Khan, M. A. (2025). "A new coralloid arecoid palm root mat from the Deccan Intertrappean Beds of India and its significance". Turkish Journal of Botany. 49 (3): 192–204. doi:10.55730/1300-008X.2855.
- ^ Bhatia, H.; Kumari, P.; Singh, N. H.; Srivastava, G. (2025). "Earliest thorny bamboo from Pleistocene of Asia characterizing spinescence and paleoclimatic adaptations in bamboos". Review of Palaeobotany and Palynology. 105347. doi:10.1016/j.revpalbo.2025.105347.
- ^ Bhatia, H.; Adhikari, P.; Verma, P.; Singh, Y. P.; Su, T.; Srivastava, G. (2025). "Early Miocene ventricose bamboo from South Asia with implications for evolutionary ecology and biogeography". iScience. 112455. doi:10.1016/j.isci.2025.112455. PMC 12059718.
- ^ Yao, G.; Xue, B.; Wang, W.; Barrett, C.; Liu, T.-J.; Rivas-Chamorro, M.; Millán, B.; Ge, X.-J. (2025). "Pre-Miocene evolutionary dynamics of tropical rainforests from a dated phylogeny of the palm family". New Phytologist. doi:10.1111/nph.70440. PMID 40751495.
- ^ Khan, M. A.; Spicer, R. A.; Su, T.; Roy, K. (2025). "A tropical rainforest biome once existed in India at the K-Pg: Evidence from 'one-vessel' arecoid palms". Review of Palaeobotany and Palynology. 105316. doi:10.1016/j.revpalbo.2025.105316.
- ^ Siver, P. A.; Reyes, A. V.; Pisera, A.; Buryak, S.; Wolfe, A. P. (2025). "Palm phytoliths in subarctic Canada imply ice-free winters 48 million years ago during the late early Eocene". Annals of Botany. doi:10.1093/aob/mcaf021. PMID 39928565.
- ^ Jacobs, B. F.; Novello, A.; Strömberg, C. A. E.; Currano, E. D.; Kabuye, C. H. S.; Judziewicz, E. J.; Pan, A. D. (2025). "New evidence of Miocene forest grasses (Poaceae: Pharoideae L.G. Clark & Judz.) from Ethiopia and Kenya: Implications for biogeography, evolution, and paleoecology". American Journal of Botany e70099. doi:10.1002/ajb2.70099. PMID 40958725.
- ^ Kumar, S.; Manchester, S. R.; Khan, M. A. (2024). "Oldest menispermaceous endocarp fossil from the Deccan Intertrappean Beds of Central India and its biogeographic implications". Review of Palaeobotany and Palynology. 334. 105249. doi:10.1016/j.revpalbo.2024.105249.
- ^ Carpenter, R. J.; McLoughlin, S. (2025). "A new leaf species of Proteaceae and other Gondwanan elements from the early Paleogene Lota–Coronel flora of south–central Chile". Australian Systematic Botany. doi:10.1071/SB24033.
- ^ Manchester, S. R. (2025). "Tetracentron (Trochodendraceae) in the Paleocene and Miocene of western North America". Journal of Plant Research. doi:10.1007/s10265-025-01636-6. PMID 40295389.
- ^ Pan, A. D.; Jacobs, B. F.; Currano, E. D.; Gostel, M. R.; Lowry, P. P.; Plunkett, G. M.; Hoffmann, J.; Geier, C.; Grímsson, F. (2025). "Fossil Astropanax Seem. (Araliaceae) from the early Miocene (21.73 Mya) Mush Valley plant assemblages of Ethiopia". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boaf011.
- ^ a b Wilf, P. (2025). "Osmoxylon-like fossils from early Eocene South America: West Gondwana–Malesia connections in Araliaceae". American Journal of Botany. e70045. doi:10.1002/ajb2.70045. PMID 40387275.
- ^ Niu, B.; Li, Q.; Jia, H.; Jin, J.; Quan, C. (2025). "Ilex subg. Prinos (Aquifoliaceae) from the upper Miocene of Beihai, low-latitude China: New insights for phylogeny". Review of Palaeobotany and Palynology 105444. doi:10.1016/j.revpalbo.2025.105444.
- ^ Tiffney, B.; Krinsky, K.; Judd, W.; Manchester, S. R. (2025). "Pentacarpellate capsular fruits of ericaceous affinity from the Paleocene of Wyoming, USA: Sandrawia gen. nov". International Journal of Plant Sciences. doi:10.1086/737469.
- ^ a b c Martinetto, E.; Manchester, S. R.; Barone, R.; Swenson, U. (2025). "Fossil seeds of Sideroxylon L. (Sapotaceae) from the Neogene of Europe and their relationships to extant species in Macaronesia and West Asia". Earth History and Biodiversity. 100028. doi:10.1016/j.hisbio.2025.100028.
- ^ Alvarado-Cárdenas, L. O.; Centeno-González, N. K.; Islas-Hernández, C. S.; Estrada-Ruiz, E. (2025). "A new genus and species of Apocynaceae (Gentianales) seed macrofossil from the Early Miocene amber of Simojovel de Allende, Chiapas, Mexico". Palaeoworld. doi:10.1016/j.palwor.2025.200983.
- ^ Hung, N. B.; Huang, J.; Del Rio, C.; Hoa, N. T. M.; Truong, D. V.; Pha, P. D.; Su, T.; Li, S.-F. (2025). "First endocarp record of Miquelia (Icacinaceae) from the late Miocene of northern Vietnam and its phytogeographical and paleoecological implications". Review of Palaeobotany and Palynology. 105285. doi:10.1016/j.revpalbo.2025.105285.
- ^ Wu, Y.; Kodrul, T.; Zheng, Y.; Maslova, N.; Ni, Z.-J.; Wu, X.-K.; Jin, J.-H. (2025). "A naturally folded leaf fossil of Bauhinia s.l. from the middle Paleocene of South China and its phytogeographical and palaeoecological implications". Papers in Palaeontology. 11 (2). e70013. doi:10.1002/spp2.70013.
- ^ Zhao, Y.-S.; Wang, T.-X.; Xiao, S.-M.; Li, S.-F.; Huang, J. (2025). "Fossil pods of tropical tree Peltophorum (Caesalpinioideae, Fabaceae) from southwestern China". Review of Palaeobotany and Palynology. 105282. doi:10.1016/j.revpalbo.2025.105282.
- ^ Cao, Z.-D.; Xie, S.-P.; Liu, L.-M.; Li, X.-M.; Zhang, S.-H.; Zhang, Y.-H.; Yan, D.-F. (2025). "A moderate elevation and warm-humid climate of the Wulan Basin, NE Tibetan Plateau in the Middle Miocene indicated by Pueraria macrofossils". Journal of Palaeogeography. doi:10.1016/j.jop.2024.08.012.
- ^ Manchester, S. R.; Correa-Narvaez, J.; Krinsky, K.; Judd, W. S.; Tiffney, B. H. (2025). "Extinct Fagaceae from the Paleocene of Wyoming, USA: cupulate nuts of Hexagonokaryon gen. nov". International Journal of Plant Sciences. doi:10.1086/738560.
- ^ Çelik, H. (2025). "A New Fossil Wood Species from Galatian Volcanic Province (Anatolia): Myricoxylon unalakkemikii H.Çelik sp. nov". Forestist. 75: 1–7. doi:10.5152/forestist.2025.24064.
- ^ Huang, J.; Jia, H.; Yan, R.-F.; Meng, X.-N.; Han, Z.-C.; Dong, T.-Q.; Pan, J.; Quan, C. (2025). "Fossil involucres and a nutlet of Ostrya (Betulaceae) from the upper Eocene of Shaanxi and their biogeographic implications". Palaeoworld. doi:10.1016/j.palwor.2025.200955.
- ^ Tang, S.-R.; Li, Q.-J.; Jia, H.; Jin, J.-H.; Quan, C. (2025). "Calophyllum (Calophyllaceae) with high leaf mass per area from the upper Miocene of Beihai, low-latitude China". Palaeoworld. doi:10.1016/j.palwor.2025.200979.
- ^ Siegert, C.; Gandolfo, M. A.; Wilf, P. (2025). "Oldest known Malpighiaceae fossils: early Eocene Patagonian fruits support a wide paleolatitudinal distribution". International Journal of Plant Sciences. doi:10.1086/737467.
- ^ Ali, A.; Patel, R.; Rana, R. S.; Khan, M. A. (2025). "The first fossil record of Thryallis Mart. (Malpighiaceae) winged fruits from India". Nordic Journal of Botany. doi:10.1002/njb.04852.
- ^ Geier, C.; Engel, M. S.; Bouchal, J. M.; Ulrich, S.; Schönenberger, J.; Uhl, D.; Wappler, T.; Wedmann, S.; Boudet, L.; Grímsson, F. (2025). "24 million years of pollination interaction between European linden flowers and bumble bees". New Phytologist. doi:10.1111/nph.70531.
- ^ a b c Gentis, N.; Licht, A.; De Franceschi, D.; Win, Z.; Aung, D. W.; Dupont-Nivet, G.; Montheil, L.; Boura, A. (2025). "Persistence of Gondwanan woods in Myanmar through the Paleogene". Annals of Botany mcaf190. doi:10.1093/aob/mcaf190. PMID 40852851.
- ^ Wheeler, E.; Manchester, S. R.; Baas, P. (2025). "Late Eocene woods from central Oregon, western USA". Acta Palaeobotanica. 65 (1): 1–39. doi:10.35535/acpa-2025-0001.
- ^ Dong, H.; Wu, Y.; Wang, X.; Wang, M.; Ji, D.; Liang, J.; Xiao, L. (2025). "Fossil Samaras of Acer in the Lower Miocene of Central Inner Mongolia, China, and Their Phytogeographical Implications". Diversity. 17 (3). 218. doi:10.3390/d17030218.
- ^ a b Bhatia, H.; Srivastava, G. (2025). "Rising Himalaya and climate change drive endemism in the Western Ghats: Fossil evidence insights". Review of Palaeobotany and Palynology. 105348. doi:10.1016/j.revpalbo.2025.105348.
- ^ Ali, A.; de Almeida, R. F.; Patel, R.; Rana, R. S.; Khan, M. A. (2025). "An Early Malpighiaceous Plant-Pollinator Relationship: Evidence by a Gland-Bearing Petal (Osmophores) from the Eocene of India". International Journal of Plant Sciences. 186 (4): 293–298. doi:10.1086/735171.
- ^ Hazra, T.; Khan, M. A. (2025). "Late Neogene diversity of Fabaceae in the Chotanagpur Plateau, eastern India: palaeoecological implications". Earth History and Biodiversity. doi:10.1016/j.hisbio.2025.100020.
- ^ Monje Dussán, C.; Pederneiras, L. C.; Angyalossy, V. (2025). "Inferring the hemiepiphytic habit of Ficus (Moraceae) through wood anatomical characters in modern and fossil woods". Brazilian Journal of Botany. doi:10.1007/s40415-025-01067-6.
- ^ Hamersma, A. M.; Karumanchi, C.; Kapgate, D. K.; Pigg, K. B.; Smith, S. Y.; Graham, S. A.; Manchester, S. R. (2025). "Revision of the fossil flower genus Sahnianthus Shukla (Myrtales) from the latest Cretaceous Deccan Intertrappean Beds of India". Acta Palaeobotanica. 65 (1): 98–121. doi:10.35535/acpa-2025-0003.
- ^ Bhatia, H.; Srivastava, G. (2025). "Earliest Swintonia (Anacardiaceae) fossil from the late Paleogene of India suggests its Gondwanan origin". Geobios. doi:10.1016/j.geobios.2025.05.008.
- ^ Wang, T.-X.; Wilf, P.; Briguglio, A.; Kocsis, L.; Donovan, M. P.; Zou, X.; Slik, J. W. F. (2025). "Fossils of an endangered, endemic, giant dipterocarp species open a historical portal into Borneo's vanishing rainforests". American Journal of Botany. e70036. doi:10.1002/ajb2.70036. PMC 12094065.
- ^ Zolina, A. A.; Golovneva, L. B.; Grabovskiy, A. A. (2025). "The morphological diversity and distribution of the genus Menispermites (Magnoliopsida) in the Cretaceous of Northern Asia". Palaeontologia Electronica. 28 (1). 28.1.a9. doi:10.26879/1441.
- ^ Puebla, G. G.; Prámparo, M. B. (2025). "Stellula meridionalis gen. et sp. nov., the oldest fossil flower from the Early Cretaceous of Argentina". Review of Palaeobotany and Palynology. 105350. doi:10.1016/j.revpalbo.2025.105350.
- ^ Ma, X.; Zhang, C.; Yang, L.; Hedges, S. B.; Zhong, B. (2025). "New insights on angiosperm crown age based on Bayesian node dating and skyline fossilized birth-death approaches". Nature Communications. 16. 2265. doi:10.1038/s41467-025-57687-9. PMC 11889176.
- ^ Clark, J. W.; Donoghue, P. C. J. (2025). "Uncertainty in the timing of diversification of flowering plants rests with equivocal interpretation of their fossil record". Royal Society Open Science. 12 (5). 242158. doi:10.1098/rsos.242158. PMC 12115813.
- ^ Ding, W.; Silvestro, D.; Onstein, R. E.; Wu, M.; Zhou, Z.; Xing, Y. (2025). "The stepwise rise of angiosperm-dominated terrestrial ecosystems". Biological Reviews. doi:10.1111/brv.70039. PMID 40443389.
- ^ Mendes, M. M.; Tekleva, M.; Endress, P. K.; Doyle, J. A. (2025). "Pollen ultrastructure and phylogenetic relationships of Saportanthus from the Lower Cretaceous of Portugal". International Journal of Plant Sciences. doi:10.1086/737481.
- ^ Doughty, C. E.; Wiebe, B. C.; Keany, J. M.; Gaillard, C.; Abraham, A. J.; Kristensen, J. A. (2025). "Ecosystem engineers alter the evolution of seed size by impacting fertility and the understory light environment". Palaeontology. 68 (1). e70002. doi:10.1111/pala.70002.
- ^ Cham, M. R.; Lowe, A. J.; Royer, D. L.; Ronan, S. M.; Rember, W. C.; Strömberg, C. A. E. (2025). "Estimating carbon assimilation rates from fossil leaves and application to the mid-Miocene Clarkia forest". American Journal of Botany e70082. doi:10.1002/ajb2.70082. PMID 40785203.
- ^ Lowe, A.; Aguirre, E.; Meier, J.; Oishi, C.; Strömberg, C. A. E. (2025). "Links between leaf morphology and ecological strategy across secondary succession in a temperate deciduous forest (North Carolina, USA): implications for the fossil record". Paleobiology: 1–14. doi:10.1017/pab.2025.10044.
- ^ Li, B.; Wang, H.; Wang, J.; Wu, F.; Xue, J. (2025). "A new species of Adiantites Göppert emend. Kidston from the Mississippian of Hunan, China, with a discussion of the early Carboniferous records of this genus in South China". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2550440.
- ^ Villalva, A. S.; Gnaedinger, S. (2025). "New evidence for Peltaspermales reproductive structures and their relationships to fronds in the Gondwana Triassic". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boaf027.
- ^ Jiang, Z.; Tian, N.; Wang, Y.; Li, F.; Pei, J.; Uhl, D.; Li, Y.; Wu, H.; Ning, Z.; Hao, R. (2025). "A new exceptionally preserved corystosperm wood from the Jurassic of East Asia". Science China Earth Sciences. 68 (3): 803–810. doi:10.1007/s11430-024-1480-6.
- ^ a b Nosova, N.; Crane, P. R.; Shi, G.; Domogatskaya, K. (2025). "Cupule-bearing cones of Jarudia (Doyleales) and associated leaves from the Early Cretaceous of the New Siberian Islands, Arctic Russia". Review of Palaeobotany and Palynology 105451. doi:10.1016/j.revpalbo.2025.105451.
- ^ Frolov, A. O.; Enushchenko, I. V.; Mashchuk, I. M. (2025). "A new species of Karkenia (Karkeniaceae, Ginkgoales) from the Lower Jurassic of East Siberia (Russia): palaeobiogeographical and evolutionary implications". Papers in Palaeontology. 11 (3). e70019. doi:10.1002/spp2.70019.
- ^ Šimůnek, Z.; Haldovský, J. (2025). "New callistophytalean species from the Duckmantian of the Kladno-Rakovník Basin, Czech Republic". Review of Palaeobotany and Palynology. 105283. doi:10.1016/j.revpalbo.2025.105283.
- ^ Correia, P.; Góis-Marques, C. A. (2025). "Palaeopteridium andrenelii sp. nov., a new noeggerathialean species from the Middle Pennsylvanian of Portugal with new insights on the Noeggerathiales". Geological Magazine. 162. e1. doi:10.1017/S0016756824000438.
- ^ Philippe, M.; Pole, M.; Maurizot, P.; Alizert, L.; Gendry, D. (2025). "Almost forgotten fossil wood points to the existence of an overlooked group of Mesozoic Gondwanan gymnosperms". Review of Palaeobotany and Palynology. 105383. doi:10.1016/j.revpalbo.2025.105383.
- ^ Barbacka, M.; Ziaja, J.; Gedl, P.; Pacyna, G. (2025). "Late Jurassic plant fossils from Wólka Bałtowska (Holy Cross Mountains, Poland)". Annales Societatis Geologorum Poloniae. doi:10.14241/asgp.2025.08.
- ^ Hunt, A. P.; Lucas, S. G.; May, P. T.; DiMichele, W. A. (2025). "Quebradophyllum gen. nov., an enigmatic plant of early Permian age, New Mexico, and similar rare sedimentary structures". New Mexico Museum of Natural History and Science Bulletin. 100: 95–102.
- ^ Zhang, C.-W.; Sun, B.-N.; Liu, S.; Luo, D.-D.; Li, A.-P.; Wang, Q.-J.; Ma, F.-J.; Lin, H.; He, X. (2025). "New Rhipidopsis finds from the upper Permian (Wuchiapingian) of Liupanshui in southwestern China and its Palaeobotanical significance". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2504480.
- ^ Prado, R. S.; Marques-de-Souza, J.; Iannuzzi, R. (2025). "New occurrences of Late Paleozoic seeds in the Paleovalley of Mariana Pimentel, Rio Grande do Sul: taxonomy, dispersal syndromes and biostratigraphy". Revista Brasileira de Paleontologia. 28 (1) e20250512. doi:10.4072/rbp.2025.1.0512.
- ^ Wang, K.; Jia, G.; Dong, L.; Wang, J.; Wang, S.; Wang, J.; Wan, M. (2025). "Shanxioxylon yangquanense sp. nov., a new Kasimovian cordaitalean axis from the Benxi Formation (Pennsylvanian, Carboniferous) of Yangquan City, Shanxi Province, North China". Review of Palaeobotany and Palynology. 105287. doi:10.1016/j.revpalbo.2025.105287.
- ^ Wang, D.; Pan, Y.; Zhou, Y.; Liu, L.; Qin, M.; Liu, L. (2025). "Sinolobotheca gen. nov., a Late Devonian ovule without cupule and its implication for integument functions". Plant Biology. 27 (3): 378–387. doi:10.1111/plb.13774. PMID 40110680.
- ^ DiMichele, W. A.; Lucas, S. G.; Harris, S. K.; May, P. T. (2025). "A new plant species from the Abo Formation, early Permian (Leonardian) of New Mexico, colonizer of disturbed habitats with implications regarding rarity in the fossil record". Annals of Botany mcaf162. doi:10.1093/aob/mcaf162.
- ^ Gastaldo, R. A. (2025). "Sweetea milowensis gen. et sp. nov., a Middle Mississippian (Viséan) pteridosperm preserved in a coastal marsh setting, Hartselle Sandstone, Alabama". Review of Palaeobotany and Palynology. 105399. doi:10.1016/j.revpalbo.2025.105399.
- ^ Foraponova, T. S. (2025). "New Dispersed Cuticles and Conifers from the Upper Kazanian Sediments of Udmurtia". Paleontological Journal. 59 (3): 337–347. doi:10.1134/S0031030125600271.
- ^ Wang, X.; Lei, Y.; Fu, Q. (2025). "Yuzhoua juvenilis: Another Angiosperm Seen in the Early Permian?". Life. 15 (2). 286. doi:10.3390/life15020286. PMC 11856813.
- ^ Li, B.-X.; Huang, P.; Liu, L.; Wang, J.-S.; Niklas, K.; Wang, D.-M.; Xue, J.-Z. (2025). "New ovulate cupule further informs the relationships among early seed plants and their adaptation to wind pollination". Proceedings of the Royal Society B: Biological Sciences. 292 (2043). 20242940. doi:10.1098/rspb.2024.2940. PMC 11936685. PMID 40132630.
- ^ Kocheva, L.; Karmanov, A.; Telnova, O.; Gomankov, A.; Lutoev, V. (2025). "Chemosystematic studies of Devonian coal-forming plants: Barzas Orestovia-like plants compressions". Review of Palaeobotany and Palynology 105452. doi:10.1016/j.revpalbo.2025.105452.
- ^ Krings, M. (2025). "Oldest fossil evidence of cell wall apposition as a plant defense response to fungal invasion, with notes on an analogous mechanism in equally old arbuscular mycorrhizal fungi". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 315 (2): 175–185. doi:10.1127/njgpa/1272.
- ^ Huang, P.; Zhang, H. (2025). "Zosterophyllum spathulatum Li and Cai from the Lower Devonian of Yunnan Province, China, is Adoketophyton subverticillatum (Li and Cai) Li and Edwards, 1992, with a discussion of spatial–temporal distribution of Adoketophyton". Journal of Paleontology: 1–8. doi:10.1017/jpa.2025.10111.
- ^ Doran, J. B.; Tomescu, A. M. F. (2025). "On the origin of euphyllophyte roots – hypotheses from an Early Devonian Psilophyton". Annals of Botany. doi:10.1093/aob/mcaf121. PMID 40509904.
- ^ Casselman, E.; Tomescu, A. M. F. (2025). "Characterizing and distinguishing the earliest woody euphyllophytes based on secondary xylem anatomy: method development and application". Annals of Botany. doi:10.1093/aob/mcaf122. PMID 40509900.
- ^ Šimůnek, Z.; Cleal, C. J. (2025). "New data on medullosalean foliage Odontopteris schlotheimii from the uppermost Carboniferous–lowermost Permian of central and eastern Europe". Review of Palaeobotany and Palynology 105450. doi:10.1016/j.revpalbo.2025.105450.
- ^ Villalva, A. S.; Gnaedinger, S. C. (2025). "Reproductive organs and fronds of Umkomasiales (Mesozoic seed ferns) from Cañadón Largo Formation (Middle–Upper Triassic), Patagonia, Argentina". Papers in Palaeontology. 11 (5) e70031. doi:10.1002/spp2.70031.
- ^ Lu, W.; Wu, H.; Zhao, T.; Blomenkemper, P.; Feng, Z. (2025). "Epidermal anatomy of Pterophyllum ptilum (Cycadophyta: Bennettitales) from the Upper Triassic of Sichuan Province, Southwest China". Review of Palaeobotany and Palynology. 105351. doi:10.1016/j.revpalbo.2025.105351.
- ^ Greenwood, D. R.; Conran, J. G.; West, C. K. (2025). "A Cycas L. (Cycadaceae) Leaf from the Miocene of Northern South Australia". International Journal of Plant Sciences. 186 (2): 114–126. doi:10.1086/733819.
- ^ a b c Peyrot, D.; Haig, D. W.; Mantle, D.; Baillie, P.; Mory, A.; Keep, M.; Soares, J.; Scibiorski, J.; Backhouse, J. (2025). "Palynology from the Foura Sandstone type section, Timor-Leste, and late Ladinian–Carnian (Middle–Upper Triassic) vegetation reconstruction from NW Australia". Review of Palaeobotany and Palynology. 105346. doi:10.1016/j.revpalbo.2025.105346.
- ^ a b DeBenedetti, F.; Zamaloa, M. C.; Gandolfo, M. A.; Cúneo, N. R.; Fensome, R. A.; Gravendyck, J. (2025). "Nomenclatural and taxonomic notes on the fossil pollen genus Sparganiaceaepollenites Thiergart 1937". Palynology. 49 (3) 2463407. doi:10.1080/01916122.2025.2463407.
- ^ a b Strother, P.; Vecoli, M.; Cesari, C.; Wellman, C. H. (2025). "A freshwater palynological assemblage from the Hirnantian of Saudi Arabia". Review of Palaeobotany and Palynology. 105322. doi:10.1016/j.revpalbo.2025.105322.
- ^ Zhan, H.-X.; Sui, Q.; Wu, H.; Lu, W.; Chen, J.; McLoughlin, S.; Feng, Z. (2025). "Tenellisporites capillaris sp. nov., a new dispersed lycopsid megaspore from the Middle–Upper Triassic Badong Formation, Hunan Province, China". Review of Palaeobotany and Palynology. 105384. doi:10.1016/j.revpalbo.2025.105384.
- ^ Wang, X.; Sun, Y.; Shi, X. (2025). "Terrestrial end-Guadalupian crisis constrained by mid-latitude Permian palynological data from Jimsar, Junggar Basin, China". Review of Palaeobotany and Palynology 105445. doi:10.1016/j.revpalbo.2025.105445.
- ^ Nhamutole, N.; Bamford, M.; Souza, P. A.; Félix, C. M.; Carmo, D. A.; Zimba, A.; Bande, P. (2025). "New palynological data from Maniamba Basin, Mozambique (Karoo): Correlations and implications for Lopingian floristic ecosystem reconstruction". Review of Palaeobotany and Palynology. 105310. doi:10.1016/j.revpalbo.2025.105310.
- ^ Hotton, C. L.; Bercovici, A.; Looy, C. V.; Duijnstee, I. A. P.; Chaney, D. S.; Eble, C. F.; Montañez, I. P.; Bourquin, S.; Cecil, B.; Nelson, J.; Gastaldo, R. A.; Wingerath, J.; DiMichele, W. A. (2025). "A late Permian palynological assemblage from the Spearfish Formation of South Dakota, United States: Implications for biostratigraphy, paleofloristics, and phytogeography". Palaeogeography, Palaeoclimatology, Palaeoecology 113218. doi:10.1016/j.palaeo.2025.113218.
- ^ Schneebeli-Hermann, E.; Galasso, F. (2025). "Resilient gymnosperms: reassessing floral dynamics at the permian–triassic extinction in Meishan". Review of Palaeobotany and Palynology. 105373. doi:10.1016/j.revpalbo.2025.105373.
- ^ Li, J.-H.; Peng, J.-G.; Slater, S. M.; Vajda, V. (2025). "Palynofloras across the Triassic–Jurassic boundary on Qinghai-Tibetan Plateau, Southwest China". Palaeoworld. doi:10.1016/j.palwor.2025.200910.
- ^ Fernández-Rial, S.; Santos, A. A.; Slater, S. M.; Barreiro, I. R.; Piñuela, L.; García-Ramos, J. C.; Diez, J. B. (2025). "Response of land plants to the Toarcian Oceanic Anoxic Event: Palynology of a Pliensbachian–Toarcian section from the Rodiles Formation at Lastres (Asturias, NW Spain)". Global and Planetary Change 105047. doi:10.1016/j.gloplacha.2025.105047.
- ^ Olivera, D. E.; Martínez, M. A.; Iturain, V. R.; Zavala, C. (2025). "New palynological insights into the Middle Jurassic Challacó Formation, Neuquén Basin, northwestern Patagonia, Argentina". Papers in Palaeontology. 11 (2). e70011. doi:10.1002/spp2.70011.
- ^ Zhang, Y.; Shi, X.; Bourquin, S.; Ge, W.; Wan, C.; Nulay, P. (2025). "New Early Cretaceous palynology of the Southeastern Khorat Plateau, Northeastern Thailand: palaeobotanical, palaeoclimatic, and palynophytogeographical implications". Geodiversitas. 47 (15): 641–657. doi:10.5252/geodiversitas2025v47a15.
- ^ Gravendyck, J.; Krencker, F.-N.; Riding, J. B.; Coimbra, R.; Heimhofer, U. (2025). "Barremian tricolpate pollen from Portugal—New evidence for the age of eudicot-related angiosperms". Proceedings of the National Academy of Sciences of the United States of America. 122 (21). e2421470122. doi:10.1073/pnas.2421470122.
- ^ Vajda, V.; Shevchuk, O. A.; Poropat, S. F.; Krüger, A.; Vickers-Rich, P.; Rich, T. H. (2025). "Early Cretaceous vegetation in a polar ecosystem—Palynology and zircon dating of the Koonwarra Fossil Bed, Victoria, Australia". Review of Palaeobotany and Palynology. 338. 105336. doi:10.1016/j.revpalbo.2025.105336.
- ^ Korasidis, V. A.; Wagstaff, B. E. (2025). "Cool-temperate riparian floras in the Early Cretaceous rift valley of Victoria, Australia". Alcheringa: An Australasian Journal of Palaeontology. doi:10.1080/03115518.2025.2489614.
- ^ Hofmann, C.-Ch.; Heimhofer, U.; Roberts, E. A.; Seyfullah, L. J. (2025). "More diverse and abundant than assumed: Eucommiidites pollen preserved in a deltaic setting (Lower Cretaceous) of the Araripe Basin (NE Brazil)". Cretaceous Research 106210. doi:10.1016/j.cretres.2025.106210.
- ^ Matamala, K.; Rombola, C. F.; Aramendía, I.; Noetinger, S.; Pujana, R. R. (2025). "Palynology and palynofacies of the Río Tarde Formation (Lower Cretaceous), southern Patagonia, Argentina". Ameghiniana. doi:10.5710/AMGH.25.08.2025.3644.
- ^ Lin, M.; Li, J.; Wu, Y.; Tan, T.; Xu, Y. (2025). "Vegetation and climate during the primary formation of the Songliao Basin, NE China". Cretaceous Research 106217. doi:10.1016/j.cretres.2025.106217.
- ^ Tan, X.; Feng, Y.; Liang, F.; Li, Y.; Sun, C.; Sun, G. (2025). "Lower Cretaceous palynoflora from the Binggou Formation of Jianchang Basin, western Liaoning, NE China and its U-Pb zircon age". Cretaceous Research 106247. doi:10.1016/j.cretres.2025.106247.
- ^ Rodríguez-Barreiro, I.; Santos, A. A.; Villanueva-Amadoz, U.; Hernández, J. M.; McLoughlin, S.; Diez, J. B. (2025). "Angiosperm radiation, diversification, and vegetation shifts through the Albian–Cenomanian of the northern Iberian Peninsula: Palynological evidence from the Las Loras UNESCO Global Geopark". Cretaceous Research. 106086. doi:10.1016/j.cretres.2025.106086.
- ^ Abdelhalim, L. A.; Mansour, A.; Tahoun, S. S.; Abdelrahman, K.; Wagreich, M. (2025). "Paleoenvironmental and paleoclimatic trends during the early-middle Cenomanian in northeastern Africa (Egypt): Insights from palynomorph and palynofacies analyses". Review of Palaeobotany and Palynology. 105297. doi:10.1016/j.revpalbo.2025.105297.
- ^ Samant, B.; Mohabey, D. M.; Sangode, S.; Kapgate, D. K.; Sen, A.; Dhobale, A.; Thaokar, S.; Thakre, N.; Karande, A. (2025). "Impact of the onset of Late Cretaceous Deccan volcanism on flora and climate: Palynofloral and megafloral evidence". Palaeoworld 201030. doi:10.1016/j.palwor.2025.201030.
- ^ Vieira, M.; Jolley, D. (2025). "Evaluating Post-K/Pg persistence of Classopollis: Evidence from exceptionally preserved reworked Pollen in Paleogene sub and inter-Volcanic Sediments from Northern Ireland". Review of Palaeobotany and Palynology 105424. doi:10.1016/j.revpalbo.2025.105424.
- ^ de la Parra, F.; Benson, R. (2025). "Diversification dynamics of vegetation during the Cenozoic in the Neotropics: a palynological perspective from Colombia". Paleobiology: 1–14. doi:10.1017/pab.2024.62.
- ^ Rull, V. (2025). "A critical evaluation of fossil pollen records from the mangrove tree Pelliciera beyond the Neotropics: Biogeographical and evolutionary implications". Review of Palaeobotany and Palynology. 335. 105299. doi:10.1016/j.revpalbo.2025.105299.
- ^ Korasidis, V. A.; Wing, S. L.; Morse, P. E.; Vitek, N. S.; Bloch, J. I. (2025). "Evidence for increased animal pollination during the Paleocene–Eocene thermal maximum". Paleobiology: 1–14. doi:10.1017/pab.2025.10047.
- ^ Parmar, S.; Singh, B. P.; Prasad, V. (2025). "Vegetation transitions across the Paleocene-Eocene boundary at low latitudes: Insights from a palynological study from western Indian Lignites". Journal of the Palaeontological Society of India. doi:10.1177/05529360251352625.
- ^ Bouchal, J. M.; Geier, C.; Ulrich, S.; Wilde, V.; Lenz, O. K.; Zetter, R.; Grímsson, F. (2025). "Qualitative LM and SEM study of the Messel palynoflora: Part II. Fabales to Caryophyllales". Review of Palaeobotany and Palynology. 105349. doi:10.1016/j.revpalbo.2025.105349.
- ^ Xie, G.; Li, J.-F.; Yao, Y.-F.; Wang, S.-Q.; Sun, B.; Ferguson, D. K.; Li, C.-S.; Li, M.; Deng, T.; Wang, Y.-F. (2025). "Palynological evidence reveals vegetation succession in the central Qinghai-Tibet Plateau during the Late Oligocene to Early Miocene". Journal of Systematics and Evolution. 63 (1): 53–61. doi:10.1111/jse.13168.
- ^ Malaikanok, P.; Grímsson, F.; Zetter, R.; Grote, P. J.; Denk, T.; Phuphumirat, W. (2025). "Marked Ericales diversity in late Oligocene–Early Miocene palynofloras from northern Thailand suggests stratified mountain forests". Journal of Systematics and Evolution. doi:10.1111/jse.70010.
- ^ Zhao, Y.; Qin, F.; Cui, Q.; Li, Q.; Cui, Y.; Birks, H. J. B.; Liang, C.; Zhao, W.; Li, H.; Ren, W.; Deng, C.; Ge, J.; Kong, Y.; Liu, Y.; Zhang, Z.; Zhang, J.; Cai, M.; Wei, H.; Qiu, H.; Xu, H.; Yang, H.; Chen, C.; Piao, S.; Guo, Z. (2025). "Three-and-a-half million years of Tibetan Plateau vegetation dynamics in response to climate change". Nature Ecology & Evolution: 1–15. doi:10.1038/s41559-025-02743-2.
- ^ Morley, H. P.; Morley, R. J. (2025). "Palynology of the Early Pleistocene Kalibiuk and Kaliglagah Formations at Bentasari, Central Java, Indonesia". Review of Palaeobotany and Palynology. 105352. doi:10.1016/j.revpalbo.2025.105352.
- ^ Lin, G.; Luo, C.; Herath, D. B.; Wan, S.; Su, X.; Yang, Y.; Zhong, M.; Wang, Z.; Yuan, X.; Xiang, R. (2025). "Forest and mosaic vegetation cut off savanna corridors during the Last Glacial Maximum in Southeast Asia recorded by marine pollen". Global and Planetary Change. doi:10.1016/j.gloplacha.2025.104871.
- ^ Dash, P. R.; Goswami, S.; Aggarwal, N.; Pradhan, S.; Das, D.; Behera, D. (2025). "Permian fossil whispers of ancient climates and forests: a megafloral-palynofacies odyssey in a part of eastern India". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2475198.
- ^ Kock, S.; Bamford, M. K. (2025). "Fossil wood from the Permian-Triassic Beaufort Group of South Africa's Karoo Basin: Implications for palaeoclimate". Earth History and Biodiversity 100032. doi:10.1016/j.hisbio.2025.100032.
- ^ Ferraz, J. S.; Manfroi, J.; Machado, A. F.; Gobo, W. V.; Guerra-Sommer, M.; Pinheiro, F. L. (2025). "An Oasis in Western Gondwana: A Diverse Guadalupian Paleoflora from South America". Journal of South American Earth Sciences. 158. 105508. doi:10.1016/j.jsames.2025.105508.
- ^ Shu, W.; Yu, J.; Hilton, J.; Shi, X.; Tian, L.; Diez, J. B.; Tong, J.; Lu, Y. (2025). "Floral dynamics and ecological adaptations in the Lopingian gigantopterid rainforest of South China". Review of Palaeobotany and Palynology. 338. 105335. doi:10.1016/j.revpalbo.2025.105335.
- ^ Peng, H.; Yang, W.; Wan, M.; Liu, J.; Liu, F. (2025). "Refugium amidst ruins: Unearthing the lost flora that escaped the end-Permian mass extinction". Science Advances. 11 (11). eads5614. doi:10.1126/sciadv.ads5614. PMC 11900852.
- ^ Amores, M.; Frank, T. D.; Fielding, C. R.; Hren, M. T.; Mays, C. (2025). "Age-controlled south polar floral trends show a staggered Early Triassic gymnosperm recovery following the end-Permian event". GSA Bulletin. doi:10.1130/B38017.1.
- ^ Xu, Z.; Yu, J.; Yin, H.; Merdith, A. S.; Hilton, J.; Allen, B. J.; Gurung, K.; Wignall, P. B.; Dunhill, A. M.; Shen, J.; Schwartzman, D.; Goddéris, Y.; Donnadieu, Y.; Wang, Y.; Zhang, Y.; Poulton, S. W.; Mills, B. J. W. (2025). "Early Triassic super-greenhouse climate driven by vegetation collapse". Nature Communications. 16. 5400. doi:10.1038/s41467-025-60396-y.
- ^ McLoughlin, S.; Vajda, V.; Crowley, J. L. (2025). "New U-Pb zircon dates reveal a late Norian age for the upper part of the Red Cliff Coal Measures, New South Wales, Australia—implications for biostratigraphy". Alcheringa: An Australasian Journal of Palaeontology. doi:10.1080/03115518.2025.2560545.
- ^ Knetge, A. B.; Barbosa, C.; Matthaeus, W. J.; Barclay, R. S.; Glasspool, I. J.; Gomez, B.; Hesselbo, S. P.; Popa, M. E.; Ruhl, M.; Sunderlin, D.; Surlyk, F.; McElwain, J. C. (2025). "Census collection of two fossil plant localities in Jameson Land, East Greenland supports regional ecological turnover and diversity loss at the end-Triassic mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology 113266. doi:10.1016/j.palaeo.2025.113266.
- ^ Quiroz-Cabascango, D.; Vajda, V.; McLoughlin, S.; Niedźwiedzki, G. (2025). "Earliest Jurassic plant assemblages from Sweden reveal a low-diversity ginkgoalean and cheirolepid flora dominating the post-extinction landscape". Annals of Botany mcaf143. doi:10.1093/aob/mcaf143. PMID 40632901.
- ^ Wang, Y.; Cao, J.; Zhi, D.; Tang, Y.; Zhang, C.; Xie, A. (2025). "Molecular fossil responses to Toarcian (Early Jurassic) climate warming in the high-latitude lacustrine Junggar Basin, China". Global and Planetary Change. 253 104960. doi:10.1016/j.gloplacha.2025.104960.
- ^ Muraviev, A.; Kvaček, J.; Uranbileg, L.; Otgonsuren, D.; Dashkhorol, J.; Kustatscher, E. (2025). "Middle Jurassic plant fossils from the East Gobi Basin (Mongolia)". Review of Palaeobotany and Palynology. 105371. doi:10.1016/j.revpalbo.2025.105371.
- ^ Chen, H.-Y.; Abu Hamad, A.; Wang, Y.-D.; Uhl, D. (2025). "Preliminary cuticular studies on plant remains from the Middle Jurassic (Bathonian) of NW Jordan". Review of Palaeobotany and Palynology 105437. doi:10.1016/j.revpalbo.2025.105437.
- ^ García Massini, J. L.; Nunes, G. C.; Yañez, A.; Escapa, I. H.; Guido, D. (2025). "Jurassic Osmundaceous Landscapes in Patagonia: Exploring the Concept of Ecological Stasis in the Deseado Massif, Argentina". Plants. 14 (2). 165. doi:10.3390/plants14020165. PMC 11768899.
- ^ McLoughlin, S.; Donaldson, S.; Pott, C.; Smith, E. T. (2025). "An opalised mid-Cretaceous flora from the Griman Creek Formation at Lightning Ridge, eastern Australia". Review of Palaeobotany and Palynology. 105403. doi:10.1016/j.revpalbo.2025.105403.
- ^ Coiffard, C.; El Atfy, H.; Darwish, M. H.; Mohamed, A. (2025). "A reappraisal of the vegetation from the dinosaur-bearing Bahariya Formation (lower Cenomanian; Cretaceous), Egypt". Swiss Journal of Palaeontology. 144 57. doi:10.1186/s13358-025-00387-0.
- ^ Silva, E.; Iglesias, A.; Atkinson, B.; Smith, S. Y.; Olivero, E. B. (2025). "Exceptional preservation of plants in calcareous concretions from Santa Marta Formation (Late Cretaceous), James Ross Island, Antarctic Peninsula". Ameghiniana. 62 (2): 130–143. doi:10.5710/AMGH.29.01.2025.3611.
- ^ Stiles, E.; Gelfo, J. N.; Raigemborn, M. S.; Kohn, M. J.; Canares, B. A. D.; Trayler, R. B.; Ibañez-Mejía, M.; Erra, G.; Goin, F.; Strömberg, C. A. E. (2025). "Phytoliths reveal Paleocene−Eocene forest expansions preceded dryland vegetation in southern South America". GSA Bulletin. doi:10.1130/B38275.1.
- ^ Zhang, X.-W.; Liu, J.; Spicer, R. A.; Gao, Y.; Yao, X.-R.; Qin, X.-Y.; Zhou, Z.-K.; Su, T. (2025). "Vegetation history of the central Tibetan region during the late Oligocene–Early Miocene". Journal of Systematics and Evolution. 63 (1): 39–52. doi:10.1111/jse.13152.
- ^ Lai, Y.-J.; Ye, J.-F.; Liu, B.; Liu, Y.; Lu, A.-M.; Wei, F.-W.; Chen, Z.-D. (2025). "Integrating fossil and extant plant communities to calibrate paleoelevation of the Qinghai–Tibet Plateau". Journal of Systematics and Evolution. 63 (1): 25–38. doi:10.1111/jse.13172.
- ^ Zhang, R.; Guo, J.; Bradshaw, C. D.; Xu, X.; Shen, T.; Li, S.; Nie, J.; Zhang, C.; Li, X.; Liu, Z.; Zhang, J.; Jiang, D.; Hu, Y.; Sun, J. (2025). "Vegetation feedbacks accelerated the late Miocene climate transition". Science Advances. 11 (18). eads4268. doi:10.1126/sciadv.ads4268. PMC 12047422. PMID 40315310.
- ^ Ochoa, D.; Carré, M.; Montenegro, J.-F.; DeVries, T. J.; Caballero-Rodríguez, D.; Rodríguez-Reyes, O.; Barbosa-Espitia, A.; Cardich, J.; Cruz-Acevedo, E.; Cruz, D.; Foster, D. A.; LaTorre-Acuy, M.; Quispe, F.; Rivera-Chira, M.; Romero, P. E.; Salas-Gismondi, R.; Urbina, M.; Flores, J.-A. (2025). "Late Miocene greening of the Peruvian Desert". Communications Earth & Environment. 6. 391. doi:10.1038/s43247-025-02322-0.
- ^ Courtin, J.; Stoof-Leichsenring, K. R.; Lisovski, S.; Liu, Y.; Alsos, I. G.; Biskaborn, B. K.; Diekmann, B.; Melles, M.; Wagner, B.; Pestryakova, L.; Russell, J.; Huang, Y.; Herzschuh, U. (2025). "Potential plant extinctions with the loss of the Pleistocene mammoth steppe". Nature Communications. 16 (1). 645. doi:10.1038/s41467-024-55542-x. PMC 11733255. PMID 39809751.
- ^ Xu, J.; Wang, T.; Wang, X.; Körner, C.; Cao, X.; Liang, E.; Yang, Y.; Piao, S. (2025). "Late Quaternary fluctuation in upper range limit of trees shapes endemic flora diversity on the Tibetan Plateau". Nature Communications. 16 (1). 1819. doi:10.1038/s41467-025-57036-w. PMC 11842749. PMID 39979368.
- ^ El-Saadawi, W.; Nour-El-Deen, D.; El-Din, M. K.; El-Noamani, Z. (2025). "Annotated catalog of the Egyptian macrofossil plants: An overview of over 200 years of research—Cryptogamae and Phanerogamae". Review of Palaeobotany and Palynology. 105320. doi:10.1016/j.revpalbo.2025.105320.
- ^ Jardine, P. E.; Morck, H.; Lomax, B. H. (2025). "Which morphological traits can be used to reconstruct genome size in fossil plants? Assessing sporomorph size and stomatal guard cell length as paleo-genome size proxies". Paleobiology: 1–14. doi:10.1017/pab.2025.8.
- ^ Liu, Y.; Torres, L. N.; Wang, B.; Pei, W.; Na, Y.; Song, Q.; Shi, X. (2025). "Artificial Intelligence in Paleobotany and Palynology". Geological Journal. doi:10.1002/gj.70007.