2025 in paleobotany

List of years in paleobotany
In paleontology
2022
2023
2024
2025
2026
2027
2028
In arthropod paleontology
2022
2023
2024
2025
2026
2027
2028
In paleoentomology
2022
2023
2024
2025
2026
2027
2028
In paleomalacology
2022
2023
2024
2025
2026
2027
2028
In reptile paleontology
2022
2023
2024
2025
2026
2027
2028
In archosaur paleontology
2022
2023
2024
2025
2026
2027
2028
In mammal paleontology
2022
2023
2024
2025
2026
2027
2028
In paleoichthyology
2022
2023
2024
2025
2026
2027
2028

This paleobotany list records new fossil plant taxa that were described during the year 2025, as well as notes other significant paleobotany discoveries and events which occurred during 2025.

Algae

[edit]

Charophytes

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Ovoidites rigidus[1]

Sp. nov

Zavattieri & Gutiérrez

Late Triassic

Potrerillos Formation

 Argentina

A zygnematacean green alga.

Tarimochara[2]

Gen. et sp. nov

Liu et al.

Ordovician (Katian)

 China

A member of the family Charophyceae. Genus includes new species T. miraclensis.

Chlorophytes

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Archaeodunaliella[3]

Gen. et sp. nov

Zhu et al.

CarboniferousPermian (KasimovianAsselian)

Fengcheng Formation

 China

A member of the family Dunaliellaceae. The type species is A. junggarensis.

Morelletpora sinica[4]

Sp. nov

Valid

Schlagintweit, Xu & Zhang

Late Cretaceous (Campanian)

Yigeziya Formation

 China

A member of Dasycladales belonging to the family Triploporellaceae.

Rhodophytes

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Antiquifosliella[5]

Gen. et sp. nov

Vinn in Vinn et al.

Ordovician (Katian)

 Estonia

A red alga belonging to the family Corallinaceae. The type species is A. tinnae.

Masloviporidium crassimuri[6]

Sp. nov

Brenckle & Sheng

Carboniferous (Serpukhovian)

Kinkaid Limestone

 United States
( Illinois)

A red alga.

Vachardia[6]

Gen. et sp. nov

Brenckle & Sheng

Carboniferous (Serpukhovian)

Kinkaid Limestone

 United States
( Illinois)

A red alga. The type species is V. multigena.

Phycological research

[edit]
  • A study on the reproduction of Eugonophyllum, based on fossils from the Carboniferous (Gzhelian) Maping Formation (Guizhou, China), is published by Wang et al. (2025).[7]

Non-vascular plants

[edit]

Bryophyta

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Tricosta angeiophoros[8]

Sp. nov

Valid

Valois et al.

Early Cretaceous (Valanginian)

 Canada
( British Columbia)

A moss belonging to the family Tricostaceae. Published online in 2024; the final version of the article naming it was published in 2025.

Marchantiophyta

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Corsiniopsis[9]

Gen. et sp. nov

Flores & Cariglino

Late Triassic

Potrerillos Formation

 Argentina

A liverwort belonging to the group Marchantiales. Genus includes new species C. kurtzii.

Frullania chiapasensis[10]

Sp. nov

Valid

Mamontov, Feldberg, Schäfer-Verwimp & Gradstein in Feldberg et al.

Miocene

Mexican amber

 Mexico

A liverwort, a species of Frullania.

Hyponychium[11]

Gen. et sp. nov

Paulsen et al.

Eocene

Anglesea amber

 Australia

A liverwort belonging to the group Jungermanniales. The type species is H. pentadactylum.

Marchantites elegans[9]

Comb. nov

(Barale & Ouaja)

 Tunisia

Moved from Hepaticites elegans Barale & Ouaja (2002).

Radula panduriformis[11]

Sp. nov

Paulsen et al.

Eocene

Anglesea amber

 Australia

A liverwort, a species of Radula.

Thysananthus patrickmuelleri[10]

Sp. nov

Valid

Feldberg, Gradstein, Schäfer-Verwimp & Mamontov in Feldberg et al.

Miocene

Mexican amber

 Mexico

A liverwort belonging to the group Porellales and the family Lejeuneeae.

Non-vascular plant research

[edit]
  • Evidence of impact of socio-economic and language factors on the documentation of bryophyte fossil record is presented by Blanco-Moreno, Bippus & Tomescu (2025).[12]

Lycophytes

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Selaginella jorelisiae[13]

Sp. nov

Valid

López-García, Schmidt & Regalado in López-García et al.

Miocene

Dominican amber

 Dominican Republic

A species of Selaginella.

Staphylophyton[14]

Gen. et sp. nov

Valid

Gensel et al.

Devonian (Emsian)

 Canada
( New Brunswick)

A zosterophyll. Genus includes new species S. semiglobosa. Published online in 2024; the final version of the article naming it was published in 2025.

Zosterophyllum baoyangense[15]

Sp. nov

Huang & Xue in Huang et al.

Devonian (Pragian)

Mangshan Group

 China

Ferns and fern allies

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Arthropitys raimundii[16]

Sp. nov

Valid

Rößler et al.

Permian

Leukersdorf Formation

 Germany

A calamitalean. Published online in 2024; the final version of the article naming it was published in 2025.

Coniopteris haifanggouensis[17]

Sp. nov

Li & Tian in Li et al.

Middle Jurassic

Haifanggou Formation

 China

A member of the family Dicksoniaceae.

Equisetum shandongensis[18]

Sp. nov

Jin et al.

Early Cretaceous

Laiyang Formation

 China

A species of Equisetum.

Hexaphyllostrobus negauneeana[19]

Sp. nov

D'Antonio et al.

Carboniferous (Moscovian)

Mazon Creek fossil beds

 United States
( Illinois)

A sphenophyll cone.

Irizaripteris[20]

Gen. nov

Valid

Iglesias et al.

Paleocene

Cross Valley-Wiman Formation

Antarctica

A member of the family Dryopteridaceae belonging to the subfamily Dryopteridoideae.

Krameropteris calophyllum[21]

Sp. nov

Li in Li & Meng

Late Cretaceous (Cenomanian)

Kachin amber

 Myanmar

A member of the family Dennstaedtiaceae.

Millerocaulis santamartaensis[22]

Sp. nov

Koppelhus et al.

Late Cretaceous

Snow Hill Island Formation

Antarctica

A member of the family Osmundaceae.

Salvinia indica[23]

Sp. nov

Ali & Khan in Ali et al.

Paleocene–Eocene

Subathu Formation

 India

A species of Salvinia.

Pteridological research

[edit]
  • New fossil material of Nemejcopteris haiwangii, providing evidence of climbing on Psaronius tree hosts, is described from Permian strata of the Taiyuan Formation in the Wuda Coalfield (Inner Mongolia, China) by Li et al. (2025).[24]

Conifers

[edit]

Cheirolepidiaceae

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Frenelopsis callapezii[25]

Sp. nov

Valid

Kvaček, Mendes & Van Konijnenburg-van Cittert

Early Cretaceous

Figueira da Foz Formation

 Portugal

Published online in 2024; the final version of the article naming it was published in 2025.

Cupressaceae

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Athrosequoia[26]

Gen. et sp. nov

Pfeiler, Ortiz & Tomescu in Pfeiler et al.

Early Cretaceous (Barremian/Aptian)

Budden Canyon Formation

 United States
( California)

Woody seed cone of a member of Cupressaceae. Genus includes new species A. walkeri.

Stutzeliastrobus araucarioides[27]

Comb. nov

(Tan & Zhu)

Early Cretaceous

Guyang Formation

 China

Moved from Elatides araucarioides Tan & Zhu (1982)

Pinaceae

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Lesbosoxylon zourosii[28]

Sp. nov

Zhu & Wang in Zhu et al.

Miocene

Sigri Pyroclastic Formation

 Greece

Pinus longlingensis[29]

Sp. nov

Song & Wu in Song et al.

Pliocene

Mangbang Formation

 China

A pine.

Pinus mangkangensis[30]

Sp. nov

Yao & Su in Yao et al.

Eocene

Mangkang Basin

 China

A pine.

Pinuxylon anatolica[31]

Sp. nov

Akkemik & Mantzouka

Miocene

Hançili Formation

 Turkey

A member of the family Pinaceae.

Podocarpaceae

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Dacrycarpoides[32]

Gen. et sp. nov

Patel, Cantrill & Leslie in Patel et al.

Miocene

 New Caledonia

The type species is D. neocaledonica.

Metapodocarpoxylon brasiliense[33]

Sp. nov

Conceição et al.

Missão Velha Formation

 Brazil

Gnetophyta

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Ephedra transversa[34]

Sp. nov

Song & Wu in Li et al.

Early Cretaceous

Yixian Formation

 China

A species of Ephedra.

Flowering plants

[edit]

Magnoliids

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Cryptocarya makumensis[35]

Sp. nov

Bhatia & Srivastava

Oligocene

 India

A species of Cryptocarya.

Cryptocaryoxylon istanbulensis[36]

Sp. nov

Valid

Akkemik & Üner

Late Oligocene–Early Miocene

İstanbul Formation

 Turkey

Fossil wood of a member of the family Lauraceae.

Laurinoxylon americanum[37]

Comb. nov

(Petriella)

Paleocene

Cerro Bororó Formation

 Argentina

Moved from Bridelioxylon americanum Petriella (1972).

Longexylon[38]

Gen. et sp. nov

Pujana et al.

Late Cretaceous

Snow Hill Island Formation

Antarctica

Fossil wood of a member of the family Lauraceae. Genus includes new species L. oliveroi.

Magnolia dorotheae[39]

Sp. nov

Valid

Kunzmann et al.

Eocene

 Germany

A species of Magnolia. Published online in 2024; the final version of the article naming it was published in 2025.

Magnolia geinitzii[40]

Comb. nov

Valid

(Engelhardt)

Miocene

 Germany

A species of Magnolia; moved from Livistona geinitzii Engelhardt (1870).

Magnoliid research

[edit]
  • Beurel et al. (2025) study the phylogenetic affinities of Nothophylica piloburmensis, and recover it as a member of Laurales related to the families Lauraceae and Hernandiaceae.[41]

Monocots

[edit]

Alismatales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Maresurculus[42]

Gen. et sp. nov

Yamada

Miocene

Morozaki Group

 Japan

Seagrass with probable affinities with Cymodoceaceae. Genus includes new species M. aichiensis.

Potamogeton crispissima[20]

Comb. nov

Valid

(Dusén)

Paleocene

Cross Valley-Wiman Formation

Antarctica

A species of Potamogeton.

Thalassites morozakiensis[42]

Sp. nov

Yamada

Miocene

Morozaki Group

 Japan

Seagrass with probable affinities with Hydrocharitaceae.

Arecales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Palmoxylon trachycarpeaeense[43]

Sp. nov

Kumar & Khan in Kumar, Spicer & Khan

Cretaceous-Paleocene (Maastrichtian-Danian)

Deccan Intertrappean Beds

 India

Fossil wood of a member of the family Arecaceae belonging to the subfamily Coryphoideae and the tribe Trachycarpeae.

Rhizopalmoxylon arecoides[44]

Sp. nov

Valid

Kumar & Khan in Kumar, Spicer & Khan

Cretaceous-Paleocene (Maastrichtian-Danian)

Deccan Intertrappean Beds

 India

Root mat of a member of the family Arecaceae belonging to the subfamily Arecoideae.

Liliales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Ripogonum marambio[20]

Sp. nov

Valid

Iglesias et al.

Paleocene

Cross Valley-Wiman Formation

Antarctica

A species of Ripogonum.

Poales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Chimonobambusa manipurensis[45]

Sp. nov

Bhatia & Srivastava in Bhatia et al.

Pleistocene

 India

A species of Chimonobambusa.

Ventriculmus[46]

Gen. et sp. nov

Bhatia & Srivastava in Bhatia et al.

Miocene

 India

A bamboo. The type species is V. neyvelinensis.

Monocot research

[edit]
  • Khan et al. (2025) describe fossil material of palms with one metaxylem vessel in each fibrovascular bundle from the Maastrichtian-Danian Deccan Intertrappean Beds (India), and interpret the studied fossils as Cocos-type palms belonging to the subfamily Arecoideae that likely grew in a tropical rainforest.[47]
  • Evidence from the study of phytoliths from the Giraffe locality (Northwest Territories, Canada), indicative of presence of palms close to the Arctic Circle over an extensive period of time during the Eocene (approximately 48 million years ago), is presented by Siver et al. (2025).[48]

Basal eudicots

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Palaeosinomenium indicum[49]

Sp. nov

Kumar, Manchester & Khan

Cretaceous-Paleocene (Maastrichtian-Danian)

Deccan Intertrappean Beds

 India

A member of the family Menispermaceae.
Announced in late 2024, published fully in 2025.

Proteaceaefolia[50]

Gen. et sp. nov

Carpenter & McLoughlin

Paleogene

 Chile

A member of the family Proteaceae. The type species is P. araucoensis.

Tetracentron linchensis[51]

Sp. nov

Manchester

Paleocene

Fort Union Formation

 United States
( Wyoming)

A species of Tetracentron.

Superasterids

[edit]

Apiales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Astropanax eogetem[52]

Sp. nov

Pan et al.

Miocene

Mush Valley Formation

 Ethiopia

A species of Astropanax.

Caffapanax[53]

Gen. et sp. nov

Wilf

Eocene (Ypresian)

Huitrera Formation

 Argentina

Leaf fossils of a member of the family Araliaceae. The type species is C. canessae.

Davidsaralia[53]

Gen. et sp. nov

Wilf

Eocene (Ypresian)

Huitrera Formation

 Argentina

Infructescence of a member of the family Araliaceae. The type species is D. christophae.

Ericales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Sideroxylon globosum[54]

Sp. nov

(Ludwig)

Miocene

 Germany

Sapindus lignitum Unger (1860)

A species of Sideroxylon; moved from Trapa globosa Ludwig (1860).

Sideroxylon margaritiferum[54]

Comb. nov

(Ludwig)

Miocene

 Germany

A species of Sideroxylon; moved from Taxus margaritifera Ludwig (1860).

Sideroxylon ruminatiusculum[54]

Sp. nov

Martinetto et al.

Miocene and Pliocene

 Italy

A species of Sideroxylon.

Icacinales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Miquelia yenbaiensis[55]

Sp. nov

Hung, Huang & Li in Hung et al.

Miocene

Co Phuc Formation

 Vietnam

A species of Miquelia.

Superrosids

[edit]

Fabales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Bauhinia sanshuiensis[56]

Sp. nov

Wu et al.

Paleocene

Sanshui Basin

 China

A species of Bauhinia sensu lato.

Peltophorum xingjianii[57]

Sp. nov

Zhao, Wang & Huang in Zhao et al.

Miocene

Sanhaogou Formation

 China

A species of Peltophorum.

Pueraria qinghaiensis[58]

Sp. nov

Cao & Xie in Cao et al.

Miocene

Youshashan Formation

 China

A species of Pueraria.

Fagales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Ostrya parajaponica[59]

Sp. nov

Huang & Jia in Huang et al.

Eocene

Bailuyuan Formation

 China

A species of Ostrya.

Rosales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Prunus tonyzhangii[60]

Sp. nov

Valid

Wheeler, Manchester & Baas

Eocene

John Day Formation

 United States
( Oregon)

A species of Prunus.

Sapindales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Acer pretataricum[61]

Sp. nov

Xiao & Wang in Dong et al.

Miocene

Hannuoba Formation

 China

A maple.

Nothopegia oligocastaneifolia[62]

Sp. nov

Bhatia & Srivastava

Oligocene

Tikak Parbat Formation

 India

A species of Nothopegia.

Nothopegia oligotravancorica[62]

Sp. nov

Bhatia & Srivastava

Oligocene

Tikak Parbat Formation

 India

A species of Nothopegia.

Zanthoxylum maii[40]

Comb. nov

Valid

(Gregor)

Miocene

 Germany

A species of Zanthoxylum; moved from Toddalia maii Gregor (1975).

Zanthoxylum naviculaeforme[40]

Comb. nov

Valid

(Reid)

Miocene

 France

A species of Zanthoxylum; moved from Martya naviculaeformis Reid (1923).

Zanthoxylum turovense[40]

Comb. nov

Valid

(Czeczott & Skirgiełło)

Miocene

 Poland

A species of Zanthoxylum; moved from Sapoticarpum turovense Czeczott & Skirgiełło (1975).

Superrosid research

[edit]
  • Ali et al. (2025) describe a gland-bearing petal of cf. Mcvaughia sp. from the Eocene Palana Formation (India), interpreted as possible evidence that members of the lineage of the studied plant already had volatile glands used to attract pollinators (possibly anthophorid bees) in the early Eocene.[63]
  • Hazra & Khan (2025) report the discovery of a diverse assemblage of legume fruits and leaflet remains from the Rajdanda Formation (India), interpreted as evidence of the presence of a warm and humid tropical environment during the Pliocene.[64]
  • A study on the anatomy of wood of extant members of the genus Ficus and fossil wood with affinities to Ficus, and on its implications for determination of the organs preserved as fossil wood and their habits, is published by Monje Dussán, Pederneiras & Angyalossy (2025).[65]
  • A leaf of Swintonia floribunda, representing the oldest record of the genus Swintonia reported to date, is described from the Oligocene Tikak Parbat Formation (India) by Bhatia & Srivastava (2025), who interpret this finding as supporting the Gondwanan origin of the Anacardiaceae.[66]
  • The first fossil material assigned to a living endangered tropical tree species (Dryobalanops rappa) is described from the Plio-Pleistocene strata from Brunei by Wang et al. (2025).[67]

Other angiosperms

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Menispermites temlyanensis[68]

Sp. nov

Zolina, Golovneva & Grabovskiy

Late Cretaceous–Paleocene (Maastrichtian–Danian)

Tanyurer Formation

 Russia
( Chukotka Autonomous Okrug)

A flowering plant with similarities to members of the genus Menispermum.

Stellula[69]

Gen. et sp. nov

Puebla & Prámparo

Early Cretaceous

La Cantera Formation

 Argentina

An early flowering plant, possibly with affinities with Ranunculales. The type species is S. meridionalis.

General angiosperm research

[edit]
  • A study on the timing of the evolution of the flowering plants is published by Ma et al. (2025), who recover the crown group of the flowering plants as likely originating in the Triassic.[70]
  • Clark & Donoghue (2025) study the impact of interpretations of the plant fossil record on molecular clock estimates of the timing of origin of the flowering plants, and estimate that the crown group of the flowering plants diverged in the Late Jurassic–Early Cretaceous interval.[71]
  • Doughty et al. (2025) use a mechanistic model to study the relationship between seed size of flowering plants, their light environment and the size of animals in their environment, and predict a rapid increase of seed size during the Paleocene that eventually plateaued or declined, likely as a result of the appearance of large herbivores that opened the understory, reducing the competitive advantage of plants with large seeds.[72]

Other plants

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Bomfleuranthus[73]

Gen. et sp. nov

Villalva & Gnaedinger

Triassic

Cañadón Largo Formation

 Argentina

A microsporangiate cone of a member of Peltaspermales. Genus includes new species B. scytoconnexus.

Fengweioxylon[74]

Gen. et sp. nov

Valid

Jiang et al.

Jurassic

Tiaojishan Formation

 China

Fossil wood of a corystosperm. The type species is F. sinense.

Karkenia bracteata[75]

Sp. nov

Frolov, Enushchenko & Mashchuk

Early Jurassic

 Russia

A member of Ginkgoales belonging to the family Karkeniaceae.

Neuromariopteris[76]

Gen. et sp. nov

Šimůnek & Haldovský

Carboniferous (Bashkirian)

Kladno-Rakovník Basin

 Czech Republic

A member of Callistophytales. The type species is N. scandens.

Palaeopteridium andrenelii[77]

Sp. nov

Correia & Góis-Marques

Carboniferous (Moscovian)

 Portugal

A progymnosperm belonging to the group Noeggerathiales.

Planoxylon toitoii[78]

Nom. nov

Philippe et al.

 New Zealand

A replacement name for Araucarioxylon australe Crié.

Rhipidopsis laoyingshanensis[79]

Sp. nov

Zhang et al.

Permian (Wuchiapingian)

 China

Shanxioxylon yangquanense[80]

Sp. nov

Wang & Wan in Wang et al.

Carboniferous (Kasimovian)

Benxi Formation

 China

A cordaitalean.

Sinolobotheca[81]

Gen. et sp. nov

Valid

Wang et al.

Devonian (Famennian)

Wutong Formation

 China

An ovule of a seed plant of uncertain affinities. Genus includes new species S. octa.

Yuzhoua[82]

Gen. et sp. nov

Wang, Lei & Fu

Permian (Asselian)

Lower Shihhotse Formation

 China

A plant of uncertain affinities, with similarities to the flowering plants. The type species is Y. juvenilis.

Zaijunia[83]

Gen. et sp. nov

Li et al.

Devonian (Famennian)

Wutong Formation

 China

A seed plant belonging to the group Lagenospermopsida and to the family Elkinsiaceae. The type species is Z. biloba.

Other plant research

[edit]

Palynology

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Cadargasporites helbyi[88]

Sp. nov

Peyrot et al.

Triassic

Babulu Formation

 Timor-Leste

Cadargasporites timorensis[88]

Sp. nov

Peyrot et al.

Triassic

Babulu Formation

 Timor-Leste

Planctonites? comasii[88]

Sp. nov

Peyrot et al.

Triassic

Babulu Formation

 Timor-Leste

Sparganiaceaepollenites intertrappeansis[89]

Nom. nov

DeBenedetti et al.

Late Cretaceous-Paleocene (Maastrichtian-Danian)

Mandla Formation

 India

Sparganiaceaepollenites annulatus Thakre et al. 2024 (junior homonym of S. annulatus De Benedetti, 2023).

Fossil pollen; a replacement name for Sparganiaceaepollenites reticulatus Samant et al. (2022).

Sparganiaceaepollenites oczkowicensis[89]

Nom. nov

DeBenedetti et al.

Miocene

 Poland

Fossil pollen; a replacement name for Sparganiaceaepollenites microreticulatus Grabowska & Ważyńska (2009).

Stigmatocystia[90]

Gen. et sp. nov

Strother et al.

Ordovician (Hirnantian)

Sarah Formation

 Saudi Arabia

Zygospores of a member of the family Zygnemataceae. The type species is S. divericata.

Tenellisporites capillaris[91]

Sp. nov

Zhan et al.

Triassic

Badong Formation

 China

A lycopsid megaspore.

Zygnema paleopawneanum[90]

Sp. nov

Strother et al.

Ordovician (Hirnantian)

Sarah Formation

 Saudi Arabia

Zygospores of a member of the genus Zygnema.

Palynological research

[edit]
  • Nhamutole et al. (2025) study the composition of palynological assemblages from the Permian (Lopingian) strata of the Maniamba Basin (Mozambique), reporting evidence of the presence of plants indicative of lowland fluvial setting.[92]
  • Evidence from the study of palynological assemblages from the South Chinese Meishan section, indicative of presence of persistent gymnosperm-dominated vegetation during the Permian-Triassic transition, is presented by Schneebeli-Hermann & Galasso (2025).[93]
  • Evidence from the study of palynofloral assemblages from the Germig Section (Qinghai-Tibetan Plateau; Tibet, China), interpreted as indicative of a shift from floras dominated by seed ferns and conifers to floras dominated by cheirolepids during the Triassic-Jurassic transition, is presented by Li et al. (2025).[94]
  • Description of the palynological assemblage from the Middle Jurassic Challacó Formation (Argentina), including a Mesozoic record of the otherwise Proterozoic to Paleozoic taxon Gloeocapsomorpha, is presented by Olivera et al. (2025).[95]
  • Tricolpate pollen, identified as pollen of flowering plants belonging to the eudicot clade, is described from the Barremian strata from nearshore marine sediments in the Lusitanian Basin (Portugal) by Gravendyck et al. (2025).[96]
  • A study on the composition of the gymnosperm-dominated palynoflora from the Lower Cretaceous strata from the Koonwarra fossil bed (Australia) is published by Vajda et al. (2025).[97]
  • Evidence from the study of palynological assemblages from the Barremian–Aptian Gippsland Basin and the Albian Otway Basin (Victoria, Australia), indicative of a high-rainfall regime of a floral turnover in the studied resulting in different composition of the assemblages from the studied basins, is presented by Korasidis & Wagstaff (2025).[98]
  • A study on palynofloral assemblages from the Las Loras UNESCO Global Geopark (Spain), providing evidence of gradual shift from conifer-dominated floras to ones with increased presence of flowering plants through the Albian–Cenomanian, is published by Rodríguez-Barreiro et al. (2025).[99]
  • Evidence from the study of palynomorph and palynofacies from the Bahariya Formation (Egypt), interpreted as indicative of warm and humid climate during the early-middle Cenomanian with a short episode of semi-arid to arid conditions during the late early Cenomanian, is presented by Abdelhalim et al. (2025).[100]
  • Evidence from the study of palynological assemblages from the Llanos basin (Colombia), indicative of impact of environmental changes on the diversification of Neotropical plants during the Cenozoic, is presented by de la Parra & Benson (2025).[101]
  • Rull (2025) revises purported fossil pollen records of Pelliciera found outside the Neotropics, and argues that only a subset of Cenozoic pollen records from tropical West Africa can be confirmed as likely fossils of members of Pelliciera.[102]
  • Revision of the fossil pollen of members of Fabales, Rosales, Fagales, Malpighiales, Myrtales, Sapindales, Malvales, Santalales and Caryophyllales from the palynological assemblage from the Eocene Messel Formation (Germany) is published by Bouchal et al. (2025).[103]
  • Evidence from the study of fossil pollen from the Dingqinghu Formation (China), indicative of presence of a mixed deciduous and coniferous forest in the central Qinghai-Tibet Plateau during the Oligocene-Miocene transition, is presented by Xie et al. (2025).[104]
  • Evidence from the study of pollen record from the Zoige Basin, indicative of changes of vegetation in the Tibetan Plateau related to temperature changes during the last 3.5 million years, is presented by Zhao et al. (2025).[105]
  • A study on the environment and climate in Java (Indonesia) during the early Pleistocene, based on data from palynological assemblages from the Kalibiuk and Kaliglagah formations, is published by Morley & Morley (2025), who interpret the studied assemblages as indicative of a strongly seasonal climate, and interpret the assemblages from the Kalibuik Formation and the basal Kaliglagah Formation as indicative of presence of a large delta dominated by mangroves, while considering the assemblages from the upper Kaliglagah Formation to be consistent with the presence of a freshwater swamp.[106]
  • Evidence from the study of pollen record from the eastern Mainland Southeast Asia, indicative of presence of forest-seasonal savanna mosaics in the studied region during the Last Glacial Maximum, is presented by Lin et al. (2025), who find no evidence of presence of savanna corridors linking the Leizhou Peninsula and Singapore during the Last Glacial Maximum.[107]

General research

[edit]
  • A study on the floral assemblage from the Permian strata of the East Bokaro Coalfield (India), providing evidence of the presence of a diverse ecosystem of large trees and shrubs, is published by Dash et al. (2025).[108]
  • Ferraz et al. (2025) report the discovery of a diverse plant association in the Guadalupian strata from the Cerro Chato outcrop (Paraná Basin, Brazil).[109]
  • Evidence of changes of composition of gigantopterid-dominated rainforests known from the Longtan Formation (China) during the Lopingian is presented by Shu et al. (2025), who also report evidence of the presence of climbing structures in Gigantonoclea.[110]
  • Evidence from the study of fossil material from the South Taodonggou Section in the Turpan-Hami Basin (China), interpreted as indicative of presence of a refugium of land vegetation that preserved the stability of food chains during the Permian–Triassic extinction event and might have been one of the source regions for the diversification of terrestrial life in the aftermath of the extinction event, is presented by Peng et al. (2025).[111]
  • Evidence of a staggered recovery of plant communities from the Sydney Basin (Australia) in the aftermath of the Permian–Triassic extinction event, indicative of the presence of a succession gymnosperm-dominated and lycophyte-dominated plant communities lasting until the early Middle Triassic, is presented by Amores et al. (2025).[112]
  • A study on the composition of the Middle Jurassic plant assemblage from the Khamarkhoovor Formation (Mongolia) is published by Muraviev et al. (2025).[113]
  • Evidence of the presence of a plant community dominated by ferns belonging to the family Osmundaceae, similar to extant plant communities such as those from swamp settings from the Parana Forest in northeastern Argentina, is reported from the Jurassic La Matilde Formation (Argentina) by García Massini et al. (2025).[114]
  • Silva et al. (2025) study the taphonomy of exceptionally preserved plant remains from the Upper Cretaceous Santa Marta Formation (Antarctica).[115]
  • Evidence from the study of phytoliths from the Lunpola Basin of the Qinghai–Tibetan Plateau, interpreted as indicative of presence mixed coniferous and broad-leaved forest during the late Oligocene–Early Miocene, is presented by Zhang et al. (2025).[116]
  • A study on the timing of the uplift of the Lhasa and Qiangtang terranes, based on composition of fossil plant communities from the Qinghai–Tibet Plateau (China), is published by Lai et al. (2025).[117]
  • Evidence indicating that climate and geographic changes in the Miocene resulted in vegetation changes that in turn caused climate change feedbacks that impacted cooling and precipitation changes during the late Miocene climate transition is presented by Zhang et al. (2025).[118]
  • Evidence from the study of plant macrofossils and palynoflora from the Pisco Formation (Peru), indicative of presence of a diverse dry forest biome in the area of present-day coastal Peruvian desert during the Miocene, is presented by Ochoa et al. (2025).[119]
  • A study on ancient DNA from sediment cores from lakes in Alaska and Siberia, providing evidence of plant extinctions associated with environmental changes during the Pleistocene–Holocene transition, is published by Courtin et al. (2025).[120]
  • Evidence of changes of the upper range limit of trees in the Tibetan Plateau since the Last Glacial Maximum, and of a relationship between those changes and pattern of beta diversity of the studied flora, is presented Xu et al. (2025).[121]
  • El-Saadawi et al. (2025) present an annotated catalog of plant macrofossil remains from Egypt, including fossils ranging from Devonian to Quaternary.[122]
  • Jardine, Morck & Lomax (2025) compare the utility of morphological traits which might be proxies for genome size of fossil plants, and report evidence of a robust relationship between genome size and guard cell length in plants.[123]
  • Liu et al. (2025) review the development and application of artificial intelligence in paleobotany and palynology from the 1980s to 2025.[124]

References

[edit]
  1. ^ Zavattieri, A. M.; Gutiérrez, P. R. (2025). "Freshwater green algae and fungi from Upper Triassic strata of the Cuyana Basin, central-western Argentina: indicators of palaeoenvironment and petroleum source potential". Alcheringa: An Australasian Journal of Palaeontology. doi:10.1080/03115518.2025.2492230.
  2. ^ Liu, L.; Han, J.; Zhang, Z.; Tang, Q.; Pang, K.; Li, R.; Wu, Y.; Hua, H.; Guo, B.; Cai, C.; Riding, R. (2025). "Ordovician marine Charophyceae and insights into land plant derivations". Nature Plants: 1–11. doi:10.1038/s41477-025-02003-y. PMID 40447741.
  3. ^ Zhu, L.-Y.; Zhang, H.; Shi, T.-M.; Tang, P. (2025). "A possible biotic precursor, Archaeodunaliella junggarensis n. gen. n. sp., in the Upper Paleozoic Fengcheng Formation from Junggar Basin, Northwest China". Palaeoworld. doi:10.1016/j.palwor.2025.200936.
  4. ^ Schlagintweit, F.; Xu, Y.; Zhang, S. (2025). "Calcareous green algae (Dasycladales, Halimedaceae) from the Upper Cretaceous of the western Tarim Basin, NW China: Systematic palaeontology, microfacies, and palaeobiogeographic significance". Carnets Geol. 25 (4): 89–108. doi:10.2110/carnets.2025.2504.
  5. ^ Vinn, O.; Madison, A.; Isakar, M.; El Hedeny, M.; Alkahtane, A. A.; Alfarraj, S. (2025). "A new modern Hydrolithon-like coralline red alga from the Upper Ordovician of Estonia". Proceedings of the Geologists' Association. doi:10.1016/j.pgeola.2025.101127.
  6. ^ a b Sheng, Q.; Brenckle, P. (2025). "Serpukhovian (Upper Mississippian) red algae from the type Mississippian region of southern Illinois, U.S.A". Review of Palaeobotany and Palynology. 105362. doi:10.1016/j.revpalbo.2025.105362.
  7. ^ Wang, J.-J.; Gong, E.-P.; Zhang, Y.-L.; Huang, W.-T.; Li, X.; Wang, L.-F.; Lai, G.-M.; Li, D.-P. (2025). "The role of algal reproduction in phylloid algal buildups: A case study in Pennsylvanian Phylloid algae in southern Guizhou, China". Journal of Palaeogeography. doi:10.1016/j.jop.2025.02.002.
  8. ^ Valois, M.; Blanco-Moreno, C.; Bippus, A. C.; Stockey, R. A.; Rothwell, G. W.; Tomescu, A. M. F. (2025). "The state of the art on tricostate mosses, with description of a new species of Tricostaceae". Taxon. 74 (1): 155–173. doi:10.1002/tax.13292.
  9. ^ a b Flores, J. R.; Cariglino, B. (2025). "Corsiniopsis kurtzii gen. et sp. nov., a new fertile marchantioid fossil from the Late Triassic of Argentina provides evidence of the evolutionary trends of fertile branches in the complex thalloid liverworts". Annals of Botany. doi:10.1093/aob/mcae199. PMID 40119645.
  10. ^ a b Feldberg, K.; Kaasalainen, U.; Mamontov, Y. S.; Gradstein, S. R.; Schäfer-Verwimp, A.; Divakar, P. K.; Schmidt, A. R. (2025). "Extending the fossil record of Miocene neotropical epiphyte communities". Fossil Record. 28 (1): 79–102. doi:10.3897/fr.28.137758.
  11. ^ a b Paulsen, M.; Ohlsen, D.; Cantrill, D. J.; Stilwell, J. (2025). "Eocene liverwort and moss species preserved in Anglesea amber from Australia". Review of Palaeobotany and Palynology. 338. 105330. doi:10.1016/j.revpalbo.2025.105330.
  12. ^ Blanco-Moreno, C.; Bippus, A. C.; Tomescu, A. M. F. (2025). "How do the principal megabiases in the fossil record affect the discovery of past bryophyte diversity?". Annals of Botany. doi:10.1093/aob/mcaf070.
  13. ^ López-García, A. G.; Schmidt, A. R.; Serguera, M.; Regalado, L. (2025). "First record of Selaginella from Miocene amber". Fossil Record. 28 (1): 57–66. doi:10.3897/fr.28.e138310.
  14. ^ Gensel, P.; Milano, A.; Willoughby, A.; Belcher, J. (2024). "A new zosterophyll with novel emergence and cuticle features from the Early Devonian of New Brunswick, Canada". International Journal of Plant Sciences. 186 (3): 152–166. doi:10.1086/734304.
  15. ^ Huang, P.; Wang, J.-S.; Wang, Y.-L.; Liu, L.; Zhao, J.-Y.; Xue, J.-Z. (2025). "The smallest Zosterophyllum plant from the Lower Devonian of South China and the divergent life-history strategies in zosterophyllopsids". Proceedings of the Royal Society B: Biological Sciences. 292 (2038). 20242337. doi:10.1098/rspb.2024.2337. PMC 11732410. PMID 39809313.
  16. ^ Rößler, R.; Merbitz, M.; Vogel, B.; Noll, B. (2025). "Gymnospermous wood anatomy in a new calamitalean – Arthropitys raimundii sp. nov. from the early Permian of Chemnitz, central-east Germany". Palaeontographica Abteilung B. 306 (1–4): 1–17. doi:10.1127/palb/2024/0084.
  17. ^ Li, F.-Y.; Tan, X.; Xiu, Y.-Y.; Liu, W.-T.; Chen, M.-Y.; Tian, N. (2025). "Study on macro- and sporemorphology of a new species of Coniopteris (Dicksoniaceae) from the Middle Jurassic of western Liaoning, Northeast China". Review of Palaeobotany and Palynology. 105312. doi:10.1016/j.revpalbo.2025.105312.
  18. ^ Jin, P.; Jia, X.; Zhang, M.; Du, B.; Li, A.; Sun, B. (2025). "New horsetail macrofossils from the Lower Cretaceous of the Laiyang Basin, Eastern China, and biogeographic analyses". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2478196.
  19. ^ D'Antonio, M. P.; Crane, P. R.; Hotton, C. L.; Wittry, J.; Herrera, F. (2025). "Sphenophyllales from the Mazon Creek flora (Upper Moscovian: Illinois, USA)". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boaf043.
  20. ^ a b c Iglesias, A.; Gallardo, R. A.; Santillana, S.; Silva Bandeira, E. M. (2025). "New plants from the upper Paleocene Cross Valley-Wiman Formation, Marambio (=Seymour) Island, Antarctic Peninsula". Ameghiniana. 62 (2): 144–174. doi:10.5710/AMGH.21.02.2025.3606.
  21. ^ Li, C.X.; Meng, F.W. (2025). "A New Species of Krameropteris (Dennstaedtiaceae) from Mid-Cretaceous Myanmar Amber". Taxonomy. 5 (1). 3. doi:10.3390/taxonomy5010003.
  22. ^ Koppelhus, E.; Vera, E. I.; Coria, R. A.; Currie, P. J.; Reguero, M. A. (2025). "A new species of the fossil fern Millerocaulis (Osmundales: Osmundaceae) from the Snow Hill Island Formation (Upper Cretaceous) of James Ross Island, Antarctic Peninsula". Review of Palaeobotany and Palynology. 105337. doi:10.1016/j.revpalbo.2025.105337.
  23. ^ Ali, A.; Spicer, R. A.; Su, T.; Kundu, S.; Khan, M. A. (2025). "An Aquatic Pteridophyte, Salvinia, from the Subathu Formation (Late Paleocene–Early Eocene) of Himachal Himalaya, India, and Its Biogeographical Implications". Aquatic Botany. 103916. doi:10.1016/j.aquabot.2025.103916.
  24. ^ Li, F.; Li, D.; Votočková Frojdova, J.; Pšenička, J.; Boyce, C. K.; Wang, J.; Zhou, W. (2025). "Climbing habit confirmed in the early Permian zygopterid fern Nemejcopteris haiwangii and its palaeoecological significance". Palaeogeography, Palaeoclimatology, Palaeoecology. 113101. doi:10.1016/j.palaeo.2025.113101.
  25. ^ Kvaček, J.; Mendes, M. M.; Van Konijnenburg-van Cittert, J. H. A. (2024). "Frenelopsis callapezii, a new cheirolepidiaceous conifer from the Lower Cretaceous (upper Aptian – lower Albian) sedimentary deposits of Lusitanian Basin in western Portugal: systematic and paleoenvironmental implications". International Journal of Plant Sciences. 186 (3): 178–192. doi:10.1086/734301.
  26. ^ Pfeiler, K.; Bippus, A. C.; Ortiz, A.; Kammet, A. R.; Escapa, I. H.; Tomescu, A. M. F. (2025). "Expanded character sampling inspired by a new Cretaceous conifer seed cone from California: importance of morphology in resolving relationships among the Cupressaceae". Annals of Botany. doi:10.1093/aob/mcaf099. PMID 40465321.
  27. ^ Xu, X.; Deng, J.; Yang, L.; Zhao, Y.; McLoughlin, S. (2025). "A new species of Stutzeliastrobus (Cupressaceae) from the Early Cretaceous of the Guyang Basin, northern China, and its paleoenvironment implications". Review of Palaeobotany and Palynology. 105353. doi:10.1016/j.revpalbo.2025.105353.
  28. ^ Zhu, Y.; Tian, N.; Zhang, J.; Wang, Y.; Zouros, N. (2025). "A new record of Lesbosoxylon (Pinaceae) wood with fungal remains from the Lower Miocene of Lesvos, Greece, and its palaeoecological implication". Review of Palaeobotany and Palynology. 105395. doi:10.1016/j.revpalbo.2025.105395.
  29. ^ Song, Z.-H.; Wang, Z.-E.; Cao, R.; Wang, Z.-S.; Wang, H.; Chen, G.-H.; Wu, J.-Y. (2025). "Fossil wood of Pinus from the Pliocene of western Yunnan, China and its palaeoclimatic implications". Review of Palaeobotany and Palynology. 334. 105279. doi:10.1016/j.revpalbo.2024.105279.
  30. ^ Yao, X.-R.; Gao, Y.; Yang, R.-D.; Meng, J.-B.; Li, S.-F.; Su, T. (2025). "The late Eocene pine seed cones from Mangkang Basin, southeastern Xizang (Tibet) and their biogeographic significance". Palaeoworld. doi:10.1016/j.palwor.2025.200935.
  31. ^ Akkemik, Ü.; Mantzouka, D. (2025). "A review of the Early Miocene Pinuxylon species of Türkiye with a new species". Turkish Journal of Botany. 49 (1): 52–63. doi:10.55730/1300-008X.2841.
  32. ^ Patel, N. U.; Cantrill, D. J.; Crane, P.; Garrouste, R.; Lowry, P. P.; Maurizot, P.; Munzinger, J.; Leslie, A. B. (2025). "Dacrycarpoides, a new genus of extinct Podocarpaceae (Coniferales) from the early Miocene of New Caledonia". American Journal of Botany. e70041. doi:10.1002/ajb2.70041. PMID 40366253.
  33. ^ Conceição, D. M.; Esperança Júnior, M. G. F.; Gobo, W. V.; Iannuzzi, R.; Batista, M. E. P.; Nascimento Jr., D. R.; Silva Filho, W. F.; Horodysk, R. S.; Bamford, M. K.; Kunzmann, L. (2025). "Unique conifer assemblage from Late Jurassic-Early Cretaceous deposits (NE Brazil) unveils the paleoclimate and paleobiogeography in the interior of equatorial Gondwana". Cretaceous Research. 106099. doi:10.1016/j.cretres.2025.106099.
  34. ^ Li, P.; Deng, M.; Hou, C.; Xing, Y. (2025). "A new Ephedra macrofossil from the Early Cretaceous Yixian Formation, Liaoning Province, China and its evolutionary significance". Review of Palaeobotany and Palynology. 105314. doi:10.1016/j.revpalbo.2025.105314.
  35. ^ Bhatia, H.; Srivastava, G. (2025). "Earliest fossil record of Cryptocarya R. Br. (Lauraceae) from Asia and its biogeographic and palaeoenvironmental implications". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-025-00658-1.
  36. ^ Akkemik, Ü.; Üner, B. (2025). "A new fossil woody flora of the Late Oligocene-Early Miocene of northwest İstanbul with a new species". Turkish Journal of Earth Sciences. 34 (3): 407–420. doi:10.55730/1300-0985.1966.
  37. ^ Ruiz, D. P.; Raigemborn, M. S.; Pujana, R. R.; Martínez, L. C. A.; Matheos, S. D.; Brea, M. (2025). "Fossil woods from the early Paleocene of the Cerro Bororó Formation (central Argentine Patagonia): systematics and palaeoenvironmental considerations". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boaf024.
  38. ^ Pujana, R. R.; Santelli, M. B.; Alvarez, M. J.; Raffi, M. E.; Santillana, S. N. (2025). "Angiosperm fossil woods, Cryptocaryeae (Lauraceae) and Cunoniaceae, with marine borers from Day Nunatak, Western Antarctica (Snow Hill Island Formation, Upper Cretaceous)". Cretaceous Research. 106146. doi:10.1016/j.cretres.2025.106146.
  39. ^ Kunzmann, L.; Huang, J.; Su, T.; Wu, M.-X.; Zhou, Z.-K. (2025). "A new fossil Magnolia Plum. ex L. (Magnoliaceae) from Eocene Profen-Süd flora in Germany and its paleobiogeographic implications". Palaeontographica Abteilung B. 306 (1–4): 19–76. doi:10.1127/palb/2024/0085.
  40. ^ a b c d Kowalski, R.; Teodoridis, V.; Utescher, T. (2025). "Update and reassessment of the Miocene carpological flora from the Turów open pit mine of SW Poland and its palaeoenvironmental implications". Acta Palaeobotanica. 65 (1): 40–97. doi:10.35535/acpa-2025-0002.
  41. ^ Beurel, S.; Bachelier, J. B.; Coiffard, C.; Schmidt, A. R.; Sadowski, E.-M. (2025). "Placing Nothophylica piloburmensis from Cretaceous amber into the angiosperm phylogeny". Taxon. doi:10.1002/tax.13350.
  42. ^ a b Yamada, T. (2025). "Seagrass fossils from the lower Miocene Morozaki Group in Aichi Prefecture, central Japan". Aquatic Botany. 201. 103913. doi:10.1016/j.aquabot.2025.103913.
  43. ^ Kumar, S.; Spicer, R. A.; Khan, M. A. (2025). "Fossil evidence of Trachycarpeae (Arecaceae) from the K-Pg of India and its biogeographic implications". Botany Letters. doi:10.1080/23818107.2025.2502926.
  44. ^ Kumar, S.; Spicer, R. A.; Khan, M. A. (2025). "A new coralloid arecoid palm root mat from the Deccan Intertrappean Beds of India and its significance". Turkish Journal of Botany. 49 (3): 192–204. doi:10.55730/1300-008X.2855.
  45. ^ Bhatia, H.; Kumari, P.; Singh, N. H.; Srivastava, G. (2025). "Earliest thorny bamboo from Pleistocene of Asia characterizing spinescence and paleoclimatic adaptations in bamboos". Review of Palaeobotany and Palynology. 105347. doi:10.1016/j.revpalbo.2025.105347.
  46. ^ Bhatia, H.; Adhikari, P.; Verma, P.; Singh, Y. P.; Su, T.; Srivastava, G. (2025). "Early Miocene ventricose bamboo from South Asia with implications for evolutionary ecology and biogeography". iScience. 112455. doi:10.1016/j.isci.2025.112455. PMC 12059718.
  47. ^ Khan, M. A.; Spicer, R. A.; Su, T.; Roy, K. (2025). "A tropical rainforest biome once existed in India at the K-Pg: Evidence from 'one-vessel' arecoid palms". Review of Palaeobotany and Palynology. 105316. doi:10.1016/j.revpalbo.2025.105316.
  48. ^ Siver, P. A.; Reyes, A. V.; Pisera, A.; Buryak, S.; Wolfe, A. P. (2025). "Palm phytoliths in subarctic Canada imply ice-free winters 48 million years ago during the late early Eocene". Annals of Botany. doi:10.1093/aob/mcaf021. PMID 39928565.
  49. ^ Kumar, S.; Manchester, S. R.; Khan, M. A. (2024). "Oldest menispermaceous endocarp fossil from the Deccan Intertrappean Beds of Central India and its biogeographic implications". Review of Palaeobotany and Palynology. 334. 105249. doi:10.1016/j.revpalbo.2024.105249.
  50. ^ Carpenter, R. J.; McLoughlin, S. (2025). "A new leaf species of Proteaceae and other Gondwanan elements from the early Paleogene Lota–Coronel flora of south–central Chile". Australian Systematic Botany. doi:10.1071/SB24033.
  51. ^ Manchester, S. R. (2025). "Tetracentron (Trochodendraceae) in the Paleocene and Miocene of western North America". Journal of Plant Research. doi:10.1007/s10265-025-01636-6. PMID 40295389.
  52. ^ Pan, A. D.; Jacobs, B. F.; Currano, E. D.; Gostel, M. R.; Lowry, P. P.; Plunkett, G. M.; Hoffmann, J.; Geier, C.; Grímsson, F. (2025). "Fossil Astropanax Seem. (Araliaceae) from the early Miocene (21.73 Mya) Mush Valley plant assemblages of Ethiopia". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boaf011.
  53. ^ a b Wilf, P. (2025). "Osmoxylon-like fossils from early Eocene South America: West Gondwana–Malesia connections in Araliaceae". American Journal of Botany. e70045. doi:10.1002/ajb2.70045. PMID 40387275.
  54. ^ a b c Martinetto, E.; Manchester, S. R.; Barone, R.; Swenson, U. (2025). "Fossil seeds of Sideroxylon L. (Sapotaceae) from the Neogene of Europe and their relationships to extant species in Macaronesia and West Asia". Earth History and Biodiversity. 100028. doi:10.1016/j.hisbio.2025.100028.
  55. ^ Hung, N. B.; Huang, J.; Del Rio, C.; Hoa, N. T. M.; Truong, D. V.; Pha, P. D.; Su, T.; Li, S.-F. (2025). "First endocarp record of Miquelia (Icacinaceae) from the late Miocene of northern Vietnam and its phytogeographical and paleoecological implications". Review of Palaeobotany and Palynology. 105285. doi:10.1016/j.revpalbo.2025.105285.
  56. ^ Wu, Y.; Kodrul, T.; Zheng, Y.; Maslova, N.; Ni, Z.-J.; Wu, X.-K.; Jin, J.-H. (2025). "A naturally folded leaf fossil of Bauhinia s.l. from the middle Paleocene of South China and its phytogeographical and palaeoecological implications". Papers in Palaeontology. 11 (2). e70013. doi:10.1002/spp2.70013.
  57. ^ Zhao, Y.-S.; Wang, T.-X.; Xiao, S.-M.; Li, S.-F.; Huang, J. (2025). "Fossil pods of tropical tree Peltophorum (Caesalpinioideae, Fabaceae) from southwestern China". Review of Palaeobotany and Palynology. 105282. doi:10.1016/j.revpalbo.2025.105282.
  58. ^ Cao, Z.-D.; Xie, S.-P.; Liu, L.-M.; Li, X.-M.; Zhang, S.-H.; Zhang, Y.-H.; Yan, D.-F. (2025). "A moderate elevation and warm-humid climate of the Wulan Basin, NE Tibetan Plateau in the Middle Miocene indicated by Pueraria macrofossils". Journal of Palaeogeography. doi:10.1016/j.jop.2024.08.012.
  59. ^ Huang, J.; Jia, H.; Yan, R.-F.; Meng, X.-N.; Han, Z.-C.; Dong, T.-Q.; Pan, J.; Quan, C. (2025). "Fossil involucres and a nutlet of Ostrya (Betulaceae) from the upper Eocene of Shaanxi and their biogeographic implications". Palaeoworld. doi:10.1016/j.palwor.2025.200955.
  60. ^ Wheeler, E.; Manchester, S. R.; Baas, P. (2025). "Late Eocene woods from central Oregon, western USA". Acta Palaeobotanica. 65 (1): 1–39. doi:10.35535/acpa-2025-0001.
  61. ^ Dong, H.; Wu, Y.; Wang, X.; Wang, M.; Ji, D.; Liang, J.; Xiao, L. (2025). "Fossil Samaras of Acer in the Lower Miocene of Central Inner Mongolia, China, and Their Phytogeographical Implications". Diversity. 17 (3). 218. doi:10.3390/d17030218.
  62. ^ a b Bhatia, H.; Srivastava, G. (2025). "Rising Himalaya and climate change drive endemism in the Western Ghats: Fossil evidence insights". Review of Palaeobotany and Palynology. 105348. doi:10.1016/j.revpalbo.2025.105348.
  63. ^ Ali, A.; de Almeida, R. F.; Patel, R.; Rana, R. S.; Khan, M. A. (2025). "An Early Malpighiaceous Plant-Pollinator Relationship: Evidence by a Gland-Bearing Petal (Osmophores) from the Eocene of India". International Journal of Plant Sciences. doi:10.1086/735171.
  64. ^ Hazra, T.; Khan, M. A. (2025). "Late Neogene diversity of Fabaceae in the Chotanagpur Plateau, eastern India: palaeoecological implications". Earth History and Biodiversity. doi:10.1016/j.hisbio.2025.100020.
  65. ^ Monje Dussán, C.; Pederneiras, L. C.; Angyalossy, V. (2025). "Inferring the hemiepiphytic habit of Ficus (Moraceae) through wood anatomical characters in modern and fossil woods". Brazilian Journal of Botany. doi:10.1007/s40415-025-01067-6.
  66. ^ Bhatia, H.; Srivastava, G. (2025). "Earliest Swintonia (Anacardiaceae) fossil from the late Paleogene of India suggests its Gondwanan origin". Geobios. doi:10.1016/j.geobios.2025.05.008.
  67. ^ Wang, T.-X.; Wilf, P.; Briguglio, A.; Kocsis, L.; Donovan, M. P.; Zou, X.; Slik, J. W. F. (2025). "Fossils of an endangered, endemic, giant dipterocarp species open a historical portal into Borneo's vanishing rainforests". American Journal of Botany. e70036. doi:10.1002/ajb2.70036. PMC 12094065.
  68. ^ Zolina, A. A.; Golovneva, L. B.; Grabovskiy, A. A. (2025). "The morphological diversity and distribution of the genus Menispermites (Magnoliopsida) in the Cretaceous of Northern Asia". Palaeontologia Electronica. 28 (1). 28.1.a9. doi:10.26879/1441.
  69. ^ Puebla, G. G.; Prámparo, M. B. (2025). "Stellula meridionalis gen. et sp. nov., the oldest fossil flower from the Early Cretaceous of Argentina". Review of Palaeobotany and Palynology. 105350. doi:10.1016/j.revpalbo.2025.105350.
  70. ^ Ma, X.; Zhang, C.; Yang, L.; Hedges, S. B.; Zhong, B. (2025). "New insights on angiosperm crown age based on Bayesian node dating and skyline fossilized birth-death approaches". Nature Communications. 16. 2265. doi:10.1038/s41467-025-57687-9. PMC 11889176.
  71. ^ Clark, J. W.; Donoghue, P. C. J. (2025). "Uncertainty in the timing of diversification of flowering plants rests with equivocal interpretation of their fossil record". Royal Society Open Science. 12 (5). 242158. doi:10.1098/rsos.242158. PMC 12115813.
  72. ^ Doughty, C. E.; Wiebe, B. C.; Keany, J. M.; Gaillard, C.; Abraham, A. J.; Kristensen, J. A. (2025). "Ecosystem engineers alter the evolution of seed size by impacting fertility and the understory light environment". Palaeontology. 68 (1). e70002. doi:10.1111/pala.70002.
  73. ^ Villalva, A. S.; Gnaedinger, S. (2025). "New evidence for Peltaspermales reproductive structures and their relationships to fronds in the Gondwana Triassic". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boaf027.
  74. ^ Jiang, Z.; Tian, N.; Wang, Y.; Li, F.; Pei, J.; Uhl, D.; Li, Y.; Wu, H.; Ning, Z.; Hao, R. (2025). "A new exceptionally preserved corystosperm wood from the Jurassic of East Asia". Science China Earth Sciences. 68 (3): 803–810. doi:10.1007/s11430-024-1480-6.
  75. ^ Frolov, A. O.; Enushchenko, I. V.; Mashchuk, I. M. (2025). "A new species of Karkenia (Karkeniaceae, Ginkgoales) from the Lower Jurassic of East Siberia (Russia): palaeobiogeographical and evolutionary implications". Papers in Palaeontology. 11 (3). e70019. doi:10.1002/spp2.70019.
  76. ^ Šimůnek, Z.; Haldovský, J. (2025). "New callistophytalean species from the Duckmantian of the Kladno-Rakovník Basin, Czech Republic". Review of Palaeobotany and Palynology. 105283. doi:10.1016/j.revpalbo.2025.105283.
  77. ^ Correia, P.; Góis-Marques, C. A. (2025). "Palaeopteridium andrenelii sp. nov., a new noeggerathialean species from the Middle Pennsylvanian of Portugal with new insights on the Noeggerathiales". Geological Magazine. 162. e1. doi:10.1017/S0016756824000438.
  78. ^ Philippe, M.; Pole, M.; Maurizot, P.; Alizert, L.; Gendry, D. (2025). "Almost forgotten fossil wood points to the existence of an overlooked group of Mesozoic Gondwanan gymnosperms". Review of Palaeobotany and Palynology. 105383. doi:10.1016/j.revpalbo.2025.105383.
  79. ^ Zhang, C.-W.; Sun, B.-N.; Liu, S.; Luo, D.-D.; Li, A.-P.; Wang, Q.-J.; Ma, F.-J.; Lin, H.; He, X. (2025). "New Rhipidopsis finds from the upper Permian (Wuchiapingian) of Liupanshui in southwestern China and its Palaeobotanical significance". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2504480.
  80. ^ Wang, K.; Jia, G.; Dong, L.; Wang, J.; Wang, S.; Wang, J.; Wan, M. (2025). "Shanxioxylon yangquanense sp. nov., a new Kasimovian cordaitalean axis from the Benxi Formation (Pennsylvanian, Carboniferous) of Yangquan City, Shanxi Province, North China". Review of Palaeobotany and Palynology. 105287. doi:10.1016/j.revpalbo.2025.105287.
  81. ^ Wang, D.; Pan, Y.; Zhou, Y.; Liu, L.; Qin, M.; Liu, L. (2025). "Sinolobotheca gen. nov., a Late Devonian ovule without cupule and its implication for integument functions". Plant Biology. 27 (3): 378–387. doi:10.1111/plb.13774. PMID 40110680.
  82. ^ Wang, X.; Lei, Y.; Fu, Q. (2025). "Yuzhoua juvenilis: Another Angiosperm Seen in the Early Permian?". Life. 15 (2). 286. doi:10.3390/life15020286. PMC 11856813.
  83. ^ Li, B.-X.; Huang, P.; Liu, L.; Wang, J.-S.; Niklas, K.; Wang, D.-M.; Xue, J.-Z. (2025). "New ovulate cupule further informs the relationships among early seed plants and their adaptation to wind pollination". Proceedings of the Royal Society B: Biological Sciences. 292 (2043). 20242940. doi:10.1098/rspb.2024.2940. PMC 11936685. PMID 40132630.
  84. ^ Doran, J. B.; Tomescu, A. M. F. (2025). "On the origin of euphyllophyte roots – hypotheses from an Early Devonian Psilophyton". Annals of Botany. doi:10.1093/aob/mcaf121. PMID 40509904.
  85. ^ Casselman, E.; Tomescu, A. M. F. (2025). "Characterizing and distinguishing the earliest woody euphyllophytes based on secondary xylem anatomy: method development and application". Annals of Botany. doi:10.1093/aob/mcaf122. PMID 40509900.
  86. ^ Lu, W.; Wu, H.; Zhao, T.; Blomenkemper, P.; Feng, Z. (2025). "Epidermal anatomy of Pterophyllum ptilum (Cycadophyta: Bennettitales) from the Upper Triassic of Sichuan Province, Southwest China". Review of Palaeobotany and Palynology. 105351. doi:10.1016/j.revpalbo.2025.105351.
  87. ^ Greenwood, D. R.; Conran, J. G.; West, C. K. (2025). "A Cycas L. (Cycadaceae) Leaf from the Miocene of Northern South Australia". International Journal of Plant Sciences. 186 (2): 114–126. doi:10.1086/733819.
  88. ^ a b c Peyrot, D.; Haig, D. W.; Mantle, D.; Baillie, P.; Mory, A.; Keep, M.; Soares, J.; Scibiorski, J.; Backhouse, J. (2025). "Palynology from the Foura Sandstone type section, Timor-Leste, and late Ladinian–Carnian (Middle–Upper Triassic) vegetation reconstruction from NW Australia". Review of Palaeobotany and Palynology. 105346. doi:10.1016/j.revpalbo.2025.105346.
  89. ^ a b DeBenedetti, F.; Zamaloa, M. C.; Gandolfo, M. A.; Cúneo, N. R.; Fensome, R. A.; Gravendyck, J. (2025). "Nomenclatural and taxonomic notes on the fossil pollen genus Sparganiaceaepollenites Thiergart 1937". Palynology. doi:10.1080/01916122.2025.2463407.
  90. ^ a b Strother, P.; Vecoli, M.; Cesari, C.; Wellman, C. H. (2025). "A freshwater palynological assemblage from the Hirnantian of Saudi Arabia". Review of Palaeobotany and Palynology. 105322. doi:10.1016/j.revpalbo.2025.105322.
  91. ^ Zhan, H.-X.; Sui, Q.; Wu, H.; Lu, W.; Chen, J.; McLoughlin, S.; Feng, Z. (2025). "Tenellisporites capillaris sp. nov., a new dispersed lycopsid megaspore from the Middle–Upper Triassic Badong Formation, Hunan Province, China". Review of Palaeobotany and Palynology. 105384. doi:10.1016/j.revpalbo.2025.105384.
  92. ^ Nhamutole, N.; Bamford, M.; Souza, P. A.; Félix, C. M.; Carmo, D. A.; Zimba, A.; Bande, P. (2025). "New palynological data from Maniamba Basin, Mozambique (Karoo): Correlations and implications for Lopingian floristic ecosystem reconstruction". Review of Palaeobotany and Palynology. 105310. doi:10.1016/j.revpalbo.2025.105310.
  93. ^ Schneebeli-Hermann, E.; Galasso, F. (2025). "Resilient gymnosperms: reassessing floral dynamics at the permian–triassic extinction in Meishan". Review of Palaeobotany and Palynology. 105373. doi:10.1016/j.revpalbo.2025.105373.
  94. ^ Li, J.-H.; Peng, J.-G.; Slater, S. M.; Vajda, V. (2025). "Palynofloras across the Triassic–Jurassic boundary on Qinghai-Tibetan Plateau, Southwest China". Palaeoworld. doi:10.1016/j.palwor.2025.200910.
  95. ^ Olivera, D. E.; Martínez, M. A.; Iturain, V. R.; Zavala, C. (2025). "New palynological insights into the Middle Jurassic Challacó Formation, Neuquén Basin, northwestern Patagonia, Argentina". Papers in Palaeontology. 11 (2). e70011. doi:10.1002/spp2.70011.
  96. ^ Gravendyck, J.; Krencker, F.-N.; Riding, J. B.; Coimbra, R.; Heimhofer, U. (2025). "Barremian tricolpate pollen from Portugal—New evidence for the age of eudicot-related angiosperms". Proceedings of the National Academy of Sciences of the United States of America. 122 (21). e2421470122. doi:10.1073/pnas.2421470122.
  97. ^ Vajda, V.; Shevchuk, O. A.; Poropat, S. F.; Krüger, A.; Vickers-Rich, P.; Rich, T. H. (2025). "Early Cretaceous vegetation in a polar ecosystem—Palynology and zircon dating of the Koonwarra Fossil Bed, Victoria, Australia". Review of Palaeobotany and Palynology. 338. 105336. doi:10.1016/j.revpalbo.2025.105336.
  98. ^ Korasidis, V. A.; Wagstaff, B. E. (2025). "Cool-temperate riparian floras in the Early Cretaceous rift valley of Victoria, Australia". Alcheringa: An Australasian Journal of Palaeontology. doi:10.1080/03115518.2025.2489614.
  99. ^ Rodríguez-Barreiro, I.; Santos, A. A.; Villanueva-Amadoz, U.; Hernández, J. M.; McLoughlin, S.; Diez, J. B. (2025). "Angiosperm radiation, diversification, and vegetation shifts through the Albian–Cenomanian of the northern Iberian Peninsula: Palynological evidence from the Las Loras UNESCO Global Geopark". Cretaceous Research. 106086. doi:10.1016/j.cretres.2025.106086.
  100. ^ Abdelhalim, L. A.; Mansour, A.; Tahoun, S. S.; Abdelrahman, K.; Wagreich, M. (2025). "Paleoenvironmental and paleoclimatic trends during the early-middle Cenomanian in northeastern Africa (Egypt): Insights from palynomorph and palynofacies analyses". Review of Palaeobotany and Palynology. 105297. doi:10.1016/j.revpalbo.2025.105297.
  101. ^ de la Parra, F.; Benson, R. (2025). "Diversification dynamics of vegetation during the Cenozoic in the Neotropics: a palynological perspective from Colombia". Paleobiology: 1–14. doi:10.1017/pab.2024.62.
  102. ^ Rull, V. (2025). "A critical evaluation of fossil pollen records from the mangrove tree Pelliciera beyond the Neotropics: Biogeographical and evolutionary implications". Review of Palaeobotany and Palynology. 335. 105299. doi:10.1016/j.revpalbo.2025.105299.
  103. ^ Bouchal, J. M.; Geier, C.; Ulrich, S.; Wilde, V.; Lenz, O. K.; Zetter, R.; Grímsson, F. (2025). "Qualitative LM and SEM study of the Messel palynoflora: Part II. Fabales to Caryophyllales". Review of Palaeobotany and Palynology. 105349. doi:10.1016/j.revpalbo.2025.105349.
  104. ^ Xie, G.; Li, J.-F.; Yao, Y.-F.; Wang, S.-Q.; Sun, B.; Ferguson, D. K.; Li, C.-S.; Li, M.; Deng, T.; Wang, Y.-F. (2025). "Palynological evidence reveals vegetation succession in the central Qinghai-Tibet Plateau during the Late Oligocene to Early Miocene". Journal of Systematics and Evolution. 63 (1): 53–61. doi:10.1111/jse.13168.
  105. ^ Zhao, Y.; Qin, F.; Cui, Q.; Li, Q.; Cui, Y.; Birks, H. J. B.; Liang, C.; Zhao, W.; Li, H.; Ren, W.; Deng, C.; Ge, J.; Kong, Y.; Liu, Y.; Zhang, Z.; Zhang, J.; Cai, M.; Wei, H.; Qiu, H.; Xu, H.; Yang, H.; Chen, C.; Piao, S.; Guo, Z. (2025). "Three-and-a-half million years of Tibetan Plateau vegetation dynamics in response to climate change". Nature Ecology & Evolution: 1–15. doi:10.1038/s41559-025-02743-2.
  106. ^ Morley, H. P.; Morley, R. J. (2025). "Palynology of the Early Pleistocene Kalibiuk and Kaliglagah Formations at Bentasari, Central Java, Indonesia". Review of Palaeobotany and Palynology. 105352. doi:10.1016/j.revpalbo.2025.105352.
  107. ^ Lin, G.; Luo, C.; Herath, D. B.; Wan, S.; Su, X.; Yang, Y.; Zhong, M.; Wang, Z.; Yuan, X.; Xiang, R. (2025). "Forest and mosaic vegetation cut off savanna corridors during the Last Glacial Maximum in Southeast Asia recorded by marine pollen". Global and Planetary Change. doi:10.1016/j.gloplacha.2025.104871.
  108. ^ Dash, P. R.; Goswami, S.; Aggarwal, N.; Pradhan, S.; Das, D.; Behera, D. (2025). "Permian fossil whispers of ancient climates and forests: a megafloral-palynofacies odyssey in a part of eastern India". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2475198.
  109. ^ Ferraz, J. S.; Manfroi, J.; Machado, A. F.; Gobo, W. V.; Guerra-Sommer, M.; Pinheiro, F. L. (2025). "An Oasis in Western Gondwana: A Diverse Guadalupian Paleoflora from South America". Journal of South American Earth Sciences. 158. 105508. doi:10.1016/j.jsames.2025.105508.
  110. ^ Shu, W.; Yu, J.; Hilton, J.; Shi, X.; Tian, L.; Diez, J. B.; Tong, J.; Lu, Y. (2025). "Floral dynamics and ecological adaptations in the Lopingian gigantopterid rainforest of South China". Review of Palaeobotany and Palynology. 338. 105335. doi:10.1016/j.revpalbo.2025.105335.
  111. ^ Peng, H.; Yang, W.; Wan, M.; Liu, J.; Liu, F. (2025). "Refugium amidst ruins: Unearthing the lost flora that escaped the end-Permian mass extinction". Science Advances. 11 (11). eads5614. doi:10.1126/sciadv.ads5614. PMC 11900852.
  112. ^ Amores, M.; Frank, T. D.; Fielding, C. R.; Hren, M. T.; Mays, C. (2025). "Age-controlled south polar floral trends show a staggered Early Triassic gymnosperm recovery following the end-Permian event". GSA Bulletin. doi:10.1130/B38017.1.
  113. ^ Muraviev, A.; Kvaček, J.; Uranbileg, L.; Otgonsuren, D.; Dashkhorol, J.; Kustatscher, E. (2025). "Middle Jurassic plant fossils from the East Gobi Basin (Mongolia)". Review of Palaeobotany and Palynology. 105371. doi:10.1016/j.revpalbo.2025.105371.
  114. ^ García Massini, J. L.; Nunes, G. C.; Yañez, A.; Escapa, I. H.; Guido, D. (2025). "Jurassic Osmundaceous Landscapes in Patagonia: Exploring the Concept of Ecological Stasis in the Deseado Massif, Argentina". Plants. 14 (2). 165. doi:10.3390/plants14020165. PMC 11768899.
  115. ^ Silva, E.; Iglesias, A.; Atkinson, B.; Smith, S. Y.; Olivero, E. B. (2025). "Exceptional preservation of plants in calcareous concretions from Santa Marta Formation (Late Cretaceous), James Ross Island, Antarctic Peninsula". Ameghiniana. 62 (2): 130–143. doi:10.5710/AMGH.29.01.2025.3611.
  116. ^ Zhang, X.-W.; Liu, J.; Spicer, R. A.; Gao, Y.; Yao, X.-R.; Qin, X.-Y.; Zhou, Z.-K.; Su, T. (2025). "Vegetation history of the central Tibetan region during the late Oligocene–Early Miocene". Journal of Systematics and Evolution. 63 (1): 39–52. doi:10.1111/jse.13152.
  117. ^ Lai, Y.-J.; Ye, J.-F.; Liu, B.; Liu, Y.; Lu, A.-M.; Wei, F.-W.; Chen, Z.-D. (2025). "Integrating fossil and extant plant communities to calibrate paleoelevation of the Qinghai–Tibet Plateau". Journal of Systematics and Evolution. 63 (1): 25–38. doi:10.1111/jse.13172.
  118. ^ Zhang, R.; Guo, J.; Bradshaw, C. D.; Xu, X.; Shen, T.; Li, S.; Nie, J.; Zhang, C.; Li, X.; Liu, Z.; Zhang, J.; Jiang, D.; Hu, Y.; Sun, J. (2025). "Vegetation feedbacks accelerated the late Miocene climate transition". Science Advances. 11 (18). eads4268. doi:10.1126/sciadv.ads4268. PMC 12047422. PMID 40315310.
  119. ^ Ochoa, D.; Carré, M.; Montenegro, J.-F.; DeVries, T. J.; Caballero-Rodríguez, D.; Rodríguez-Reyes, O.; Barbosa-Espitia, A.; Cardich, J.; Cruz-Acevedo, E.; Cruz, D.; Foster, D. A.; LaTorre-Acuy, M.; Quispe, F.; Rivera-Chira, M.; Romero, P. E.; Salas-Gismondi, R.; Urbina, M.; Flores, J.-A. (2025). "Late Miocene greening of the Peruvian Desert". Communications Earth & Environment. 6. 391. doi:10.1038/s43247-025-02322-0.
  120. ^ Courtin, J.; Stoof-Leichsenring, K. R.; Lisovski, S.; Liu, Y.; Alsos, I. G.; Biskaborn, B. K.; Diekmann, B.; Melles, M.; Wagner, B.; Pestryakova, L.; Russell, J.; Huang, Y.; Herzschuh, U. (2025). "Potential plant extinctions with the loss of the Pleistocene mammoth steppe". Nature Communications. 16 (1). 645. doi:10.1038/s41467-024-55542-x. PMC 11733255. PMID 39809751.
  121. ^ Xu, J.; Wang, T.; Wang, X.; Körner, C.; Cao, X.; Liang, E.; Yang, Y.; Piao, S. (2025). "Late Quaternary fluctuation in upper range limit of trees shapes endemic flora diversity on the Tibetan Plateau". Nature Communications. 16 (1). 1819. doi:10.1038/s41467-025-57036-w. PMC 11842749. PMID 39979368.
  122. ^ El-Saadawi, W.; Nour-El-Deen, D.; El-Din, M. K.; El-Noamani, Z. (2025). "Annotated catalog of the Egyptian macrofossil plants: An overview of over 200 years of research—Cryptogamae and Phanerogamae". Review of Palaeobotany and Palynology. 105320. doi:10.1016/j.revpalbo.2025.105320.
  123. ^ Jardine, P. E.; Morck, H.; Lomax, B. H. (2025). "Which morphological traits can be used to reconstruct genome size in fossil plants? Assessing sporomorph size and stomatal guard cell length as paleo-genome size proxies". Paleobiology: 1–14. doi:10.1017/pab.2025.8.
  124. ^ Liu, Y.; Torres, L. N.; Wang, B.; Pei, W.; Na, Y.; Song, Q.; Shi, X. (2025). "Artificial Intelligence in Paleobotany and Palynology". Geological Journal. doi:10.1002/gj.70007.