Technique of integral evaluation
In mathematics , a trigonometric substitution replaces a trigonometric function for another expression. In calculus , trigonometric substitutions are a technique for evaluating integrals . In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer.[ 1] [ 2]
In the case of a definite integral, this method of integration by substitution uses the substitution to change the interval of integration. Alternatively, the antiderivative of the integrand may be applied to the original interval.
Case I: Integrands containing a 2 − x 2 [ edit ]
Let
x
=
a
sin
θ
,
{\displaystyle x=a\sin \theta ,}
and use the identity
1
−
sin
2
θ
=
cos
2
θ
.
{\displaystyle 1-\sin ^{2}\theta =\cos ^{2}\theta .}
Geometric construction for Case I
In the integral
∫
d
x
a
2
−
x
2
,
{\displaystyle \int {\frac {dx}{\sqrt {a^{2}-x^{2}}}},}
we may use
x
=
a
sin
θ
,
d
x
=
a
cos
θ
d
θ
,
θ
=
arcsin
x
a
.
{\displaystyle x=a\sin \theta ,\quad dx=a\cos \theta \,d\theta ,\quad \theta =\arcsin {\frac {x}{a}}.}
Then,
∫
d
x
a
2
−
x
2
=
∫
a
cos
θ
d
θ
a
2
−
a
2
sin
2
θ
=
∫
a
cos
θ
d
θ
a
2
(
1
−
sin
2
θ
)
=
∫
a
cos
θ
d
θ
a
2
cos
2
θ
=
∫
d
θ
=
θ
+
C
=
arcsin
x
a
+
C
.
{\displaystyle {\begin{aligned}\int {\frac {dx}{\sqrt {a^{2}-x^{2}}}}&=\int {\frac {a\cos \theta \,d\theta }{\sqrt {a^{2}-a^{2}\sin ^{2}\theta }}}\\[6pt]&=\int {\frac {a\cos \theta \,d\theta }{\sqrt {a^{2}(1-\sin ^{2}\theta )}}}\\[6pt]&=\int {\frac {a\cos \theta \,d\theta }{\sqrt {a^{2}\cos ^{2}\theta }}}\\[6pt]&=\int d\theta \\[6pt]&=\theta +C\\[6pt]&=\arcsin {\frac {x}{a}}+C.\end{aligned}}}
The above step requires that
a
>
0
{\displaystyle a>0}
and
cos
θ
>
0.
{\displaystyle \cos \theta >0.}
We can choose
a
{\displaystyle a}
to be the principal root of
a
2
,
{\displaystyle a^{2},}
and impose the restriction
−
π
/
2
<
θ
<
π
/
2
{\displaystyle -\pi /2<\theta <\pi /2}
by using the inverse sine function.
For a definite integral, one must figure out how the bounds of integration change. For example, as
x
{\displaystyle x}
goes from
0
{\displaystyle 0}
to
a
/
2
,
{\displaystyle a/2,}
then
sin
θ
{\displaystyle \sin \theta }
goes from
0
{\displaystyle 0}
to
1
/
2
,
{\displaystyle 1/2,}
so
θ
{\displaystyle \theta }
goes from
0
{\displaystyle 0}
to
π
/
6.
{\displaystyle \pi /6.}
Then,
∫
0
a
/
2
d
x
a
2
−
x
2
=
∫
0
π
/
6
d
θ
=
π
6
.
{\displaystyle \int _{0}^{a/2}{\frac {dx}{\sqrt {a^{2}-x^{2}}}}=\int _{0}^{\pi /6}d\theta ={\frac {\pi }{6}}.}
Some care is needed when picking the bounds. Because integration above requires that
−
π
/
2
<
θ
<
π
/
2
{\displaystyle -\pi /2<\theta <\pi /2}
,
θ
{\displaystyle \theta }
can only go from
0
{\displaystyle 0}
to
π
/
6.
{\displaystyle \pi /6.}
Neglecting this restriction, one might have picked
θ
{\displaystyle \theta }
to go from
π
{\displaystyle \pi }
to
5
π
/
6
,
{\displaystyle 5\pi /6,}
which would have resulted in the negative of the actual value.
Alternatively, fully evaluate the indefinite integrals before applying the boundary conditions. In that case, the antiderivative gives
∫
0
a
/
2
d
x
a
2
−
x
2
=
arcsin
(
x
a
)
|
0
a
/
2
=
arcsin
(
1
2
)
−
arcsin
(
0
)
=
π
6
{\displaystyle \int _{0}^{a/2}{\frac {dx}{\sqrt {a^{2}-x^{2}}}}=\arcsin \left({\frac {x}{a}}\right){\Biggl |}_{0}^{a/2}=\arcsin \left({\frac {1}{2}}\right)-\arcsin(0)={\frac {\pi }{6}}}
as before.
The integral
∫
a
2
−
x
2
d
x
,
{\displaystyle \int {\sqrt {a^{2}-x^{2}}}\,dx,}
may be evaluated by letting
x
=
a
sin
θ
,
d
x
=
a
cos
θ
d
θ
,
θ
=
arcsin
x
a
,
{\textstyle x=a\sin \theta ,\,dx=a\cos \theta \,d\theta ,\,\theta =\arcsin {\dfrac {x}{a}},}
where
a
>
0
{\displaystyle a>0}
so that
a
2
=
a
,
{\textstyle {\sqrt {a^{2}}}=a,}
and
−
π
/
2
≤
θ
≤
π
/
2
{\textstyle -\pi /2\leq \theta \leq \pi /2}
by the range of arcsine, so that
cos
θ
≥
0
{\displaystyle \cos \theta \geq 0}
and
cos
2
θ
=
cos
θ
.
{\textstyle {\sqrt {\cos ^{2}\theta }}=\cos \theta .}
Then,
∫
a
2
−
x
2
d
x
=
∫
a
2
−
a
2
sin
2
θ
(
a
cos
θ
)
d
θ
=
∫
a
2
(
1
−
sin
2
θ
)
(
a
cos
θ
)
d
θ
=
∫
a
2
(
cos
2
θ
)
(
a
cos
θ
)
d
θ
=
∫
(
a
cos
θ
)
(
a
cos
θ
)
d
θ
=
a
2
∫
cos
2
θ
d
θ
=
a
2
∫
(
1
+
cos
2
θ
2
)
d
θ
=
a
2
2
(
θ
+
1
2
sin
2
θ
)
+
C
=
a
2
2
(
θ
+
sin
θ
cos
θ
)
+
C
=
a
2
2
(
arcsin
x
a
+
x
a
1
−
x
2
a
2
)
+
C
=
a
2
2
arcsin
x
a
+
x
2
a
2
−
x
2
+
C
.
{\displaystyle {\begin{aligned}\int {\sqrt {a^{2}-x^{2}}}\,dx&=\int {\sqrt {a^{2}-a^{2}\sin ^{2}\theta }}\,(a\cos \theta )\,d\theta \\[6pt]&=\int {\sqrt {a^{2}(1-\sin ^{2}\theta )}}\,(a\cos \theta )\,d\theta \\[6pt]&=\int {\sqrt {a^{2}(\cos ^{2}\theta )}}\,(a\cos \theta )\,d\theta \\[6pt]&=\int (a\cos \theta )(a\cos \theta )\,d\theta \\[6pt]&=a^{2}\int \cos ^{2}\theta \,d\theta \\[6pt]&=a^{2}\int \left({\frac {1+\cos 2\theta }{2}}\right)\,d\theta \\[6pt]&={\frac {a^{2}}{2}}\left(\theta +{\frac {1}{2}}\sin 2\theta \right)+C\\[6pt]&={\frac {a^{2}}{2}}(\theta +\sin \theta \cos \theta )+C\\[6pt]&={\frac {a^{2}}{2}}\left(\arcsin {\frac {x}{a}}+{\frac {x}{a}}{\sqrt {1-{\frac {x^{2}}{a^{2}}}}}\right)+C\\[6pt]&={\frac {a^{2}}{2}}\arcsin {\frac {x}{a}}+{\frac {x}{2}}{\sqrt {a^{2}-x^{2}}}+C.\end{aligned}}}
For a definite integral, the bounds change once the substitution is performed and are determined using the equation
θ
=
arcsin
x
a
,
{\textstyle \theta =\arcsin {\dfrac {x}{a}},}
with values in the range
−
π
/
2
≤
θ
≤
π
/
2.
{\textstyle -\pi /2\leq \theta \leq \pi /2.}
Alternatively, apply the boundary terms directly to the formula for the antiderivative.
For example, the definite integral
∫
−
1
1
4
−
x
2
d
x
,
{\displaystyle \int _{-1}^{1}{\sqrt {4-x^{2}}}\,dx,}
may be evaluated by substituting
x
=
2
sin
θ
,
d
x
=
2
cos
θ
d
θ
,
{\displaystyle x=2\sin \theta ,\,dx=2\cos \theta \,d\theta ,}
with the bounds determined using
θ
=
arcsin
x
2
.
{\textstyle \theta =\arcsin {\dfrac {x}{2}}.}
Because
arcsin
(
1
/
2
)
=
π
/
6
{\displaystyle \arcsin(1/{2})=\pi /6}
and
arcsin
(
−
1
/
2
)
=
−
π
/
6
,
{\displaystyle \arcsin(-1/2)=-\pi /6,}
∫
−
1
1
4
−
x
2
d
x
=
∫
−
π
/
6
π
/
6
4
−
4
sin
2
θ
(
2
cos
θ
)
d
θ
=
∫
−
π
/
6
π
/
6
4
(
1
−
sin
2
θ
)
(
2
cos
θ
)
d
θ
=
∫
−
π
/
6
π
/
6
4
(
cos
2
θ
)
(
2
cos
θ
)
d
θ
=
∫
−
π
/
6
π
/
6
(
2
cos
θ
)
(
2
cos
θ
)
d
θ
=
4
∫
−
π
/
6
π
/
6
cos
2
θ
d
θ
=
4
∫
−
π
/
6
π
/
6
(
1
+
cos
2
θ
2
)
d
θ
=
2
[
θ
+
1
2
sin
2
θ
]
−
π
/
6
π
/
6
=
[
2
θ
+
sin
2
θ
]
|
−
π
/
6
π
/
6
=
(
π
3
+
sin
π
3
)
−
(
−
π
3
+
sin
(
−
π
3
)
)
=
2
π
3
+
3
.
{\displaystyle {\begin{aligned}\int _{-1}^{1}{\sqrt {4-x^{2}}}\,dx&=\int _{-\pi /6}^{\pi /6}{\sqrt {4-4\sin ^{2}\theta }}\,(2\cos \theta )\,d\theta \\[6pt]&=\int _{-\pi /6}^{\pi /6}{\sqrt {4(1-\sin ^{2}\theta )}}\,(2\cos \theta )\,d\theta \\[6pt]&=\int _{-\pi /6}^{\pi /6}{\sqrt {4(\cos ^{2}\theta )}}\,(2\cos \theta )\,d\theta \\[6pt]&=\int _{-\pi /6}^{\pi /6}(2\cos \theta )(2\cos \theta )\,d\theta \\[6pt]&=4\int _{-\pi /6}^{\pi /6}\cos ^{2}\theta \,d\theta \\[6pt]&=4\int _{-\pi /6}^{\pi /6}\left({\frac {1+\cos 2\theta }{2}}\right)\,d\theta \\[6pt]&=2\left[\theta +{\frac {1}{2}}\sin 2\theta \right]_{-\pi /6}^{\pi /6}=[2\theta +\sin 2\theta ]{\Biggl |}_{-\pi /6}^{\pi /6}\\[6pt]&=\left({\frac {\pi }{3}}+\sin {\frac {\pi }{3}}\right)-\left(-{\frac {\pi }{3}}+\sin \left(-{\frac {\pi }{3}}\right)\right)={\frac {2\pi }{3}}+{\sqrt {3}}.\end{aligned}}}
On the other hand, direct application of the boundary terms to the previously obtained formula for the antiderivative yields
∫
−
1
1
4
−
x
2
d
x
=
[
2
2
2
arcsin
x
2
+
x
2
2
2
−
x
2
]
−
1
1
=
(
2
arcsin
1
2
+
1
2
4
−
1
)
−
(
2
arcsin
(
−
1
2
)
+
−
1
2
4
−
1
)
=
(
2
⋅
π
6
+
3
2
)
−
(
2
⋅
(
−
π
6
)
−
3
2
)
=
2
π
3
+
3
{\displaystyle {\begin{aligned}\int _{-1}^{1}{\sqrt {4-x^{2}}}\,dx&=\left[{\frac {2^{2}}{2}}\arcsin {\frac {x}{2}}+{\frac {x}{2}}{\sqrt {2^{2}-x^{2}}}\right]_{-1}^{1}\\[6pt]&=\left(2\arcsin {\frac {1}{2}}+{\frac {1}{2}}{\sqrt {4-1}}\right)-\left(2\arcsin \left(-{\frac {1}{2}}\right)+{\frac {-1}{2}}{\sqrt {4-1}}\right)\\[6pt]&=\left(2\cdot {\frac {\pi }{6}}+{\frac {\sqrt {3}}{2}}\right)-\left(2\cdot \left(-{\frac {\pi }{6}}\right)-{\frac {\sqrt {3}}{2}}\right)\\[6pt]&={\frac {2\pi }{3}}+{\sqrt {3}}\end{aligned}}}
as before.
Case II: Integrands containing a 2 + x 2 [ edit ]
Let
x
=
a
tan
θ
,
{\displaystyle x=a\tan \theta ,}
and use the identity
1
+
tan
2
θ
=
sec
2
θ
.
{\displaystyle 1+\tan ^{2}\theta =\sec ^{2}\theta .}
Examples of Case II [ edit ]
Geometric construction for Case II
In the integral
∫
d
x
a
2
+
x
2
{\displaystyle \int {\frac {dx}{a^{2}+x^{2}}}}
we may write
x
=
a
tan
θ
,
d
x
=
a
sec
2
θ
d
θ
,
θ
=
arctan
x
a
,
{\displaystyle x=a\tan \theta ,\quad dx=a\sec ^{2}\theta \,d\theta ,\quad \theta =\arctan {\frac {x}{a}},}
so that the integral becomes
∫
d
x
a
2
+
x
2
=
∫
a
sec
2
θ
d
θ
a
2
+
a
2
tan
2
θ
=
∫
a
sec
2
θ
d
θ
a
2
(
1
+
tan
2
θ
)
=
∫
a
sec
2
θ
d
θ
a
2
sec
2
θ
=
∫
d
θ
a
=
θ
a
+
C
=
1
a
arctan
x
a
+
C
,
{\displaystyle {\begin{aligned}\int {\frac {dx}{a^{2}+x^{2}}}&=\int {\frac {a\sec ^{2}\theta \,d\theta }{a^{2}+a^{2}\tan ^{2}\theta }}\\[6pt]&=\int {\frac {a\sec ^{2}\theta \,d\theta }{a^{2}(1+\tan ^{2}\theta )}}\\[6pt]&=\int {\frac {a\sec ^{2}\theta \,d\theta }{a^{2}\sec ^{2}\theta }}\\[6pt]&=\int {\frac {d\theta }{a}}\\[6pt]&={\frac {\theta }{a}}+C\\[6pt]&={\frac {1}{a}}\arctan {\frac {x}{a}}+C,\end{aligned}}}
provided
a
≠
0.
{\displaystyle a\neq 0.}
For a definite integral, the bounds change once the substitution is performed and are determined using the equation
θ
=
arctan
x
a
,
{\displaystyle \theta =\arctan {\frac {x}{a}},}
with values in the range
−
π
2
<
θ
<
π
2
.
{\displaystyle -{\frac {\pi }{2}}<\theta <{\frac {\pi }{2}}.}
Alternatively, apply the boundary terms directly to the formula for the antiderivative.
For example, the definite integral
∫
0
1
4
d
x
1
+
x
2
{\displaystyle \int _{0}^{1}{\frac {4\,dx}{1+x^{2}}}\,}
may be evaluated by substituting
x
=
tan
θ
,
d
x
=
sec
2
θ
d
θ
,
{\displaystyle x=\tan \theta ,\,dx=\sec ^{2}\theta \,d\theta ,}
with the bounds determined using
θ
=
arctan
x
.
{\displaystyle \theta =\arctan x.}
Since
arctan
0
=
0
{\displaystyle \arctan 0=0}
and
arctan
1
=
π
/
4
,
{\displaystyle \arctan 1=\pi /4,}
∫
0
1
4
d
x
1
+
x
2
=
4
∫
0
1
d
x
1
+
x
2
=
4
∫
0
π
/
4
sec
2
θ
d
θ
1
+
tan
2
θ
=
4
∫
0
π
/
4
sec
2
θ
d
θ
sec
2
θ
=
4
∫
0
π
/
4
d
θ
=
(
4
θ
)
|
0
π
/
4
=
4
(
π
4
−
0
)
=
π
.
{\displaystyle {\begin{aligned}\int _{0}^{1}{\frac {4\,dx}{1+x^{2}}}&=4\int _{0}^{1}{\frac {dx}{1+x^{2}}}\\[6pt]&=4\int _{0}^{\pi /4}{\frac {\sec ^{2}\theta \,d\theta }{1+\tan ^{2}\theta }}\\[6pt]&=4\int _{0}^{\pi /4}{\frac {\sec ^{2}\theta \,d\theta }{\sec ^{2}\theta }}\\[6pt]&=4\int _{0}^{\pi /4}d\theta \\[6pt]&=(4\theta ){\Bigg |}_{0}^{\pi /4}=4\left({\frac {\pi }{4}}-0\right)=\pi .\end{aligned}}}
Meanwhile, direct application of the boundary terms to the formula for the antiderivative yields
∫
0
1
4
d
x
1
+
x
2
=
4
∫
0
1
d
x
1
+
x
2
=
4
[
1
1
arctan
x
1
]
0
1
=
4
(
arctan
x
)
|
0
1
=
4
(
arctan
1
−
arctan
0
)
=
4
(
π
4
−
0
)
=
π
,
{\displaystyle {\begin{aligned}\int _{0}^{1}{\frac {4\,dx}{1+x^{2}}}\,&=4\int _{0}^{1}{\frac {dx}{1+x^{2}}}\\[6pt]&=4\left[{\frac {1}{1}}\arctan {\frac {x}{1}}\right]_{0}^{1}\\[6pt]&=4(\arctan x){\Bigg |}_{0}^{1}\\[6pt]&=4(\arctan 1-\arctan 0)\\[6pt]&=4\left({\frac {\pi }{4}}-0\right)=\pi ,\end{aligned}}}
same as before.
The integral
∫
a
2
+
x
2
d
x
{\displaystyle \int {\sqrt {a^{2}+x^{2}}}\,{dx}}
may be evaluated by letting
x
=
a
tan
θ
,
d
x
=
a
sec
2
θ
d
θ
,
θ
=
arctan
x
a
,
{\displaystyle x=a\tan \theta ,\,dx=a\sec ^{2}\theta \,d\theta ,\,\theta =\arctan {\frac {x}{a}},}
where
a
>
0
{\displaystyle a>0}
so that
a
2
=
a
,
{\displaystyle {\sqrt {a^{2}}}=a,}
and
−
π
2
<
θ
<
π
2
{\displaystyle -{\frac {\pi }{2}}<\theta <{\frac {\pi }{2}}}
by the range of arctangent, so that
sec
θ
>
0
{\displaystyle \sec \theta >0}
and
sec
2
θ
=
sec
θ
.
{\displaystyle {\sqrt {\sec ^{2}\theta }}=\sec \theta .}
Then,
∫
a
2
+
x
2
d
x
=
∫
a
2
+
a
2
tan
2
θ
(
a
sec
2
θ
)
d
θ
=
∫
a
2
(
1
+
tan
2
θ
)
(
a
sec
2
θ
)
d
θ
=
∫
a
2
sec
2
θ
(
a
sec
2
θ
)
d
θ
=
∫
(
a
sec
θ
)
(
a
sec
2
θ
)
d
θ
=
a
2
∫
sec
3
θ
d
θ
.
{\displaystyle {\begin{aligned}\int {\sqrt {a^{2}+x^{2}}}\,dx&=\int {\sqrt {a^{2}+a^{2}\tan ^{2}\theta }}\,(a\sec ^{2}\theta )\,d\theta \\[6pt]&=\int {\sqrt {a^{2}(1+\tan ^{2}\theta )}}\,(a\sec ^{2}\theta )\,d\theta \\[6pt]&=\int {\sqrt {a^{2}\sec ^{2}\theta }}\,(a\sec ^{2}\theta )\,d\theta \\[6pt]&=\int (a\sec \theta )(a\sec ^{2}\theta )\,d\theta \\[6pt]&=a^{2}\int \sec ^{3}\theta \,d\theta .\\[6pt]\end{aligned}}}
The integral of secant cubed may be evaluated using integration by parts . As a result,
∫
a
2
+
x
2
d
x
=
a
2
2
(
sec
θ
tan
θ
+
ln
|
sec
θ
+
tan
θ
|
)
+
C
=
a
2
2
(
1
+
x
2
a
2
⋅
x
a
+
ln
|
1
+
x
2
a
2
+
x
a
|
)
+
C
=
1
2
(
x
a
2
+
x
2
+
a
2
ln
|
x
+
a
2
+
x
2
a
|
)
+
C
.
{\displaystyle {\begin{aligned}\int {\sqrt {a^{2}+x^{2}}}\,dx&={\frac {a^{2}}{2}}(\sec \theta \tan \theta +\ln |\sec \theta +\tan \theta |)+C\\[6pt]&={\frac {a^{2}}{2}}\left({\sqrt {1+{\frac {x^{2}}{a^{2}}}}}\cdot {\frac {x}{a}}+\ln \left|{\sqrt {1+{\frac {x^{2}}{a^{2}}}}}+{\frac {x}{a}}\right|\right)+C\\[6pt]&={\frac {1}{2}}\left(x{\sqrt {a^{2}+x^{2}}}+a^{2}\ln \left|{\frac {x+{\sqrt {a^{2}+x^{2}}}}{a}}\right|\right)+C.\end{aligned}}}
Case III: Integrands containing x 2 − a 2 [ edit ]
Let
x
=
a
sec
θ
,
{\displaystyle x=a\sec \theta ,}
and use the identity
sec
2
θ
−
1
=
tan
2
θ
.
{\displaystyle \sec ^{2}\theta -1=\tan ^{2}\theta .}
Examples of Case III [ edit ]
Geometric construction for Case III
Integrals such as
∫
d
x
x
2
−
a
2
{\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}}
can also be evaluated by partial fractions rather than trigonometric substitutions. However, the integral
∫
x
2
−
a
2
d
x
{\displaystyle \int {\sqrt {x^{2}-a^{2}}}\,dx}
cannot. In this case, an appropriate substitution is:
x
=
a
sec
θ
,
d
x
=
a
sec
θ
tan
θ
d
θ
,
θ
=
arcsec
x
a
,
{\displaystyle x=a\sec \theta ,\,dx=a\sec \theta \tan \theta \,d\theta ,\,\theta =\operatorname {arcsec} {\frac {x}{a}},}
where
a
>
0
{\displaystyle a>0}
so that
a
2
=
a
,
{\displaystyle {\sqrt {a^{2}}}=a,}
and
0
≤
θ
<
π
2
{\displaystyle 0\leq \theta <{\frac {\pi }{2}}}
by assuming
x
>
0
,
{\displaystyle x>0,}
so that
tan
θ
≥
0
{\displaystyle \tan \theta \geq 0}
and
tan
2
θ
=
tan
θ
.
{\displaystyle {\sqrt {\tan ^{2}\theta }}=\tan \theta .}
Then,
∫
x
2
−
a
2
d
x
=
∫
a
2
sec
2
θ
−
a
2
⋅
a
sec
θ
tan
θ
d
θ
=
∫
a
2
(
sec
2
θ
−
1
)
⋅
a
sec
θ
tan
θ
d
θ
=
∫
a
2
tan
2
θ
⋅
a
sec
θ
tan
θ
d
θ
=
∫
a
2
sec
θ
tan
2
θ
d
θ
=
a
2
∫
(
sec
θ
)
(
sec
2
θ
−
1
)
d
θ
=
a
2
∫
(
sec
3
θ
−
sec
θ
)
d
θ
.
{\displaystyle {\begin{aligned}\int {\sqrt {x^{2}-a^{2}}}\,dx&=\int {\sqrt {a^{2}\sec ^{2}\theta -a^{2}}}\cdot a\sec \theta \tan \theta \,d\theta \\&=\int {\sqrt {a^{2}(\sec ^{2}\theta -1)}}\cdot a\sec \theta \tan \theta \,d\theta \\&=\int {\sqrt {a^{2}\tan ^{2}\theta }}\cdot a\sec \theta \tan \theta \,d\theta \\&=\int a^{2}\sec \theta \tan ^{2}\theta \,d\theta \\&=a^{2}\int (\sec \theta )(\sec ^{2}\theta -1)\,d\theta \\&=a^{2}\int (\sec ^{3}\theta -\sec \theta )\,d\theta .\end{aligned}}}
One may evaluate the integral of the secant function by multiplying the numerator and denominator by
(
sec
θ
+
tan
θ
)
{\displaystyle (\sec \theta +\tan \theta )}
and the integral of secant cubed by parts.[ 3] As a result,
∫
x
2
−
a
2
d
x
=
a
2
2
(
sec
θ
tan
θ
+
ln
|
sec
θ
+
tan
θ
|
)
−
a
2
ln
|
sec
θ
+
tan
θ
|
+
C
=
a
2
2
(
sec
θ
tan
θ
−
ln
|
sec
θ
+
tan
θ
|
)
+
C
=
a
2
2
(
x
a
⋅
x
2
a
2
−
1
−
ln
|
x
a
+
x
2
a
2
−
1
|
)
+
C
=
1
2
(
x
x
2
−
a
2
−
a
2
ln
|
x
+
x
2
−
a
2
a
|
)
+
C
.
{\displaystyle {\begin{aligned}\int {\sqrt {x^{2}-a^{2}}}\,dx&={\frac {a^{2}}{2}}(\sec \theta \tan \theta +\ln |\sec \theta +\tan \theta |)-a^{2}\ln |\sec \theta +\tan \theta |+C\\[6pt]&={\frac {a^{2}}{2}}(\sec \theta \tan \theta -\ln |\sec \theta +\tan \theta |)+C\\[6pt]&={\frac {a^{2}}{2}}\left({\frac {x}{a}}\cdot {\sqrt {{\frac {x^{2}}{a^{2}}}-1}}-\ln \left|{\frac {x}{a}}+{\sqrt {{\frac {x^{2}}{a^{2}}}-1}}\right|\right)+C\\[6pt]&={\frac {1}{2}}\left(x{\sqrt {x^{2}-a^{2}}}-a^{2}\ln \left|{\frac {x+{\sqrt {x^{2}-a^{2}}}}{a}}\right|\right)+C.\end{aligned}}}
When
π
2
<
θ
≤
π
,
{\displaystyle {\frac {\pi }{2}}<\theta \leq \pi ,}
which happens when
x
<
0
{\displaystyle x<0}
given the range of arcsecant,
tan
θ
≤
0
,
{\displaystyle \tan \theta \leq 0,}
meaning
tan
2
θ
=
−
tan
θ
{\displaystyle {\sqrt {\tan ^{2}\theta }}=-\tan \theta }
instead in that case.
Substitutions that eliminate trigonometric functions [ edit ]
Substitution can be used to remove trigonometric functions.
For instance,
∫
f
(
sin
(
x
)
,
cos
(
x
)
)
d
x
=
∫
1
±
1
−
u
2
f
(
u
,
±
1
−
u
2
)
d
u
u
=
sin
(
x
)
∫
f
(
sin
(
x
)
,
cos
(
x
)
)
d
x
=
∫
1
∓
1
−
u
2
f
(
±
1
−
u
2
,
u
)
d
u
u
=
cos
(
x
)
∫
f
(
sin
(
x
)
,
cos
(
x
)
)
d
x
=
∫
2
1
+
u
2
f
(
2
u
1
+
u
2
,
1
−
u
2
1
+
u
2
)
d
u
u
=
tan
(
x
2
)
{\displaystyle {\begin{aligned}\int f(\sin(x),\cos(x))\,dx&=\int {\frac {1}{\pm {\sqrt {1-u^{2}}}}}f\left(u,\pm {\sqrt {1-u^{2}}}\right)\,du&&u=\sin(x)\\[6pt]\int f(\sin(x),\cos(x))\,dx&=\int {\frac {1}{\mp {\sqrt {1-u^{2}}}}}f\left(\pm {\sqrt {1-u^{2}}},u\right)\,du&&u=\cos(x)\\[6pt]\int f(\sin(x),\cos(x))\,dx&=\int {\frac {2}{1+u^{2}}}f\left({\frac {2u}{1+u^{2}}},{\frac {1-u^{2}}{1+u^{2}}}\right)\,du&&u=\tan \left({\frac {x}{2}}\right)\\[6pt]\end{aligned}}}
The last substitution is known as the Weierstrass substitution , which makes use of tangent half-angle formulas .
For example,
∫
4
cos
x
(
1
+
cos
x
)
3
d
x
=
∫
2
1
+
u
2
4
(
1
−
u
2
1
+
u
2
)
(
1
+
1
−
u
2
1
+
u
2
)
3
d
u
=
∫
(
1
−
u
2
)
(
1
+
u
2
)
d
u
=
∫
(
1
−
u
4
)
d
u
=
u
−
u
5
5
+
C
=
tan
x
2
−
1
5
tan
5
x
2
+
C
.
{\displaystyle {\begin{aligned}\int {\frac {4\cos x}{(1+\cos x)^{3}}}\,dx&=\int {\frac {2}{1+u^{2}}}{\frac {4\left({\frac {1-u^{2}}{1+u^{2}}}\right)}{\left(1+{\frac {1-u^{2}}{1+u^{2}}}\right)^{3}}}\,du=\int (1-u^{2})(1+u^{2})\,du\\&=\int (1-u^{4})\,du=u-{\frac {u^{5}}{5}}+C=\tan {\frac {x}{2}}-{\frac {1}{5}}\tan ^{5}{\frac {x}{2}}+C.\end{aligned}}}
Hyperbolic substitution [ edit ]
Substitutions of hyperbolic functions can also be used to simplify integrals.[ 4]
For example, to integrate
1
/
a
2
+
x
2
{\displaystyle 1/{\sqrt {a^{2}+x^{2}}}}
, introduce the substitution
x
=
a
sinh
u
{\displaystyle x=a\sinh {u}}
(and hence
d
x
=
a
cosh
u
d
u
{\displaystyle dx=a\cosh u\,du}
), then use the identity
cosh
2
(
x
)
−
sinh
2
(
x
)
=
1
{\displaystyle \cosh ^{2}(x)-\sinh ^{2}(x)=1}
to find:
∫
d
x
a
2
+
x
2
=
∫
a
cosh
u
d
u
a
2
+
a
2
sinh
2
u
=
∫
cosh
u
d
u
1
+
sinh
2
u
=
∫
cosh
u
cosh
u
d
u
=
u
+
C
=
sinh
−
1
x
a
+
C
.
{\displaystyle {\begin{aligned}\int {\frac {dx}{\sqrt {a^{2}+x^{2}}}}&=\int {\frac {a\cosh u\,du}{\sqrt {a^{2}+a^{2}\sinh ^{2}u}}}\\[6pt]&=\int {\frac {\cosh {u}\,du}{\sqrt {1+\sinh ^{2}{u}}}}\\[6pt]&=\int {\frac {\cosh {u}}{\cosh u}}\,du\\[6pt]&=u+C\\[6pt]&=\sinh ^{-1}{\frac {x}{a}}+C.\end{aligned}}}
If desired, this result may be further transformed using other identities, such as using the relation
sinh
−
1
z
=
arsinh
z
=
ln
(
z
+
z
2
+
1
)
{\displaystyle \sinh ^{-1}{z}=\operatorname {arsinh} {z}=\ln(z+{\sqrt {z^{2}+1}})}
:
sinh
−
1
x
a
+
C
=
ln
(
x
a
+
x
2
a
2
+
1
)
+
C
=
ln
(
x
+
x
2
+
a
2
a
)
+
C
.
{\displaystyle {\begin{aligned}\sinh ^{-1}{\frac {x}{a}}+C&=\ln \left({\frac {x}{a}}+{\sqrt {{\frac {x^{2}}{a^{2}}}+1}}\,\right)+C\\[6pt]&=\ln \left({\frac {x+{\sqrt {x^{2}+a^{2}}}}{a}}\,\right)+C.\end{aligned}}}