Tadpole graph

Tadpole graph
A (5,3)-tadpole graph.
Vertices
Edges
Girth
Propertiesconnected
planar
Notation
Table of graphs and parameters

In the mathematical discipline of graph theory, the (m,n)-tadpole graph is a special type of graph consisting of a cycle graph on m (at least 3) vertices and a path graph on n vertices, connected with a bridge.[1][2][3]

Named variants

[edit]
Name Image
Paw graph[4]
Banner graph[5]

See also

[edit]

References

[edit]
  1. ^ DeMaio, Joe; Jacobson, John (2014). "Fibonacci number of the tadpole graph". Electronic Journal of Graph Theory and Applications. 2 (2): 129–138. doi:10.5614/ejgta.2014.2.2.5.
  2. ^ Weisstein, Eric W. "Tadpole Graph". MathWorld. Archived from the original on 2025-11-16. Retrieved 2025-11-16.
  3. ^ "Tadpole graphs – Knowledge and References – Taylor & Francis". Archived from the original on 2025-11-16. Retrieved 2025-11-16.
  4. ^ Weisstein, Eric W. "Paw Graph". MathWorld. Archived from the original on 2025-11-16. Retrieved 2025-11-16.
  5. ^ Weisstein, Eric W. "Banner Graph". MathWorld. Archived from the original on 2025-11-16. Retrieved 2025-11-16.