Sandra Citi | |
|---|---|
| Occupations | Cell biologist and academic |
| Academic background | |
| Education | B.Sc., Biology Ph.D., Biology M.D. |
| Alma mater | University of Florence MRC Laboratory of Molecular Biology |
| Academic work | |
| Institutions | University of Geneva University of Padova Cornell University Medical College |
Sandra Citi is a cell biologist and academic. She discovered the protein cingulin in the 1980s. Her work and research interests focus on the molecular mechanisms underlying the function of epithelial cell junctions and their connection to the cytoskeleton, including studies on proteins such as cingulin, paracingulin, ZO-1, and PLEKHA7.
Education
[edit]Citi completed her Bachelor of Science in Biological Sciences from the University of Florence in 1982.[1] She was trained in the Structural Studies Division of the MRC Laboratory of Molecular Biology in Cambridge, UK, where she received a Ph.D. in 1986.[2][1] After completing her Ph.D., she carried out postdoctoral work at the Weizmann Institute of Science in 1987. In 1989, she earned a M.D. degree from the University of Florence.[1]
Career
[edit]Citi began her academic career in 1989 as an assistant professor of Cell Biology and Anatomy at Cornell University Medical College, New York, a position she held until 1993. She moved to the University of Padova, Italy, in 1994, where she worked as an assistant professor until 2009. Between 1996 and 2025, she was a principal investigator and associate professor in the Department of Molecular and Cellular Biology at the University of Geneva.[1] She received independent funding from the Swiss National Science Foundation.[3]
Research
[edit]Citi's research has focused on the molecular organization, function, and regulation of epithelial junctions. Her work has particularly focused on the protein cingulin, which she discovered in the 1980s,[4] highlighting its structural functions in tethering nonmuscle myosins-2 to tight junctions[5][6] and its role in regulating the expression of tight junction proteins during epithelial differentiation.[7] She also investigated paracingulin (CGNL1), demonstrating its involvement in linking microtubules to tight junctions through CAMSAP3,[8] and examined its significance in the regulation of GEFs[9] and GAPs.[10] She showed that kinase signaling regulates cadherin-mediated adhesion[11] by modulating cytoskeletal contractility.[12] She also conducted studies on the expression,[13] localization,[14] and phosphorylation of tight junction proteins.[15]
Citi has also studied how molecular interactions[16] and mechanical forces influence junctional components,[17] showing that tension induces conformational changes in the major tight junction scaffolding protein Tight junction protein ZO-1 (TJP1), leading to nuclear signaling events that regulate cell proliferation and barrier function.[18] She also reported that tight junctions act not only as barriers but also as dynamic signaling platforms[19] and are involved in mechanotransduction[20][21] to regulate apical cortex mechanics.[22] Her work also clarified to the role of PLEKHA proteins in the trafficking and function of the copper pump ATP7A[23] and in host-pathogen interactions.[24] Additionally, her work has also linked alterations in junctional proteins such as Claudin-1[25] and PLEKHA7[26] to cancer progression, observing their reduced expression in lung[25] and breast carcinomas.[26]
Awards and honors
[edit]- 2004–2005 – Radcliffe Fellowship, Harvard University[27]
Selected articles
[edit]- Citi, S; Sabanay, H; Jakes, R; Geiger, B; Kendrick-Jones, J (1988-05-19). "Cingulin, a new peripheral component of tight junctions". Nature. 333 (6170): 272–276. Bibcode:1988Natur.333..272C. doi:10.1038/333272a0. PMID 3285223.
- Spadaro, Domenica; Le, Shimin; Laroche, Thierry; Mean, Isabelle; Jond, Lionel; Yan, Jie; Citi, Sandra (2017). "Tension-Dependent Stretching Activates ZO-1 to Control the Junctional Localization of Its Interactors". Current Biology. 27 (24): 3783–3795.e8. Bibcode:2017CBio...27E3783S. doi:10.1016/j.cub.2017.11.014. PMID 29199076.
- Shah, Jimit; Rouaud, Florian; Guerrera, Diego; Vasileva, Ekaterina; Popov, Lauren M; Kelley, William L; Rubinstein, Eric; Carette, Jan E; Amieva, Manuel R; Citi, Sandra (2018). "A Dock-and-Lock Mechanism Clusters ADAM10 at Cell-Cell Junctions to Promote α-Toxin Cytotoxicity". Cell Reports. 25 (8): 2132–2147.e7. doi:10.1016/j.celrep.2018.10.088. PMID 30463011.
- Sluysmans, Sophie; Méan, Isabelle; Xiao, Tong; Boukhatemi, Amina; Ferreira, Flavio; Jond, Lionel; Mutero, Annick; Chang, Christopher J.; Citi, Sandra (2021). "PLEKHA5, PLEKHA6, and PLEKHA7 bind to PDZD11 to target the Menkes ATPase ATP7A to the cell periphery and regulate copper homeostasis". Molecular Biology of the Cell. 32 (21) ar34. doi:10.1091/mbc.E21-07-0355. PMID 34613798.
- Rouaud, Florian; Huang, Wenmao; Flinois, Arielle; Jain, Kunalika; Vasileva, Ekaterina; Di Mattia, Thomas; Mauperin, Marine; Parry, David A.D.; Dugina, Vera; Chaponnier, Christine; Méan, Isabelle; Montessuit, Sylvie; Mutero-Maeda, Annick; Yan, Jie; Citi, Sandra (2023). "Cingulin and paracingulin tether myosins-2 to junctions to mechanoregulate the plasma membrane". Journal of Cell Biology. 222 (7) e202208065. doi:10.1083/jcb.202208065. PMC 10202830. PMID 37204781.
- Maupérin, Marine; Sun, Yuze; Glandorf, Thomas; Oswald, Tabea Anne; Klatt, Niklas; Geil, Burkhard; Mutero-Maeda, Annick; Méan, Isabelle; Jond, Lionel; Janshoff, Andreas; Yan, Jie; Citi, Sandra (2025). "A feedback circuitry involving γ-actin, β-actin and nonmuscle myosin-2 A controls tight junction and apical cortex mechanics". Nature Communications. 16: 2514. doi:10.1038/s41467-025-2514-7 (inactive 15 December 2025).
{{cite journal}}: CS1 maint: DOI inactive as of December 2025 (link)
References
[edit]- ^ a b c d "Sandra Citi- ORCID". ORCID. Retrieved September 8, 2025.
- ^ "LMB Alumni List". MRC Laboratory of Molecular Biology. Retrieved November 20, 2025.
- ^ "Sandra Citi". Swiss National Science Foundation. Retrieved November 9, 2025.
- ^ Van Itallie, Christina M.; Anderson, James M. (2014). "Architecture of tight junctions and principles of molecular composition". Seminars in Cell & Developmental Biology. 36: 157–165. doi:10.1016/j.semcdb.2014.08.011. PMC 4254347. PMID 25171873.
- ^ Zhu, Guang-Jie; Huang, Yuhang (2023). "Cingulin regulates hair cell cuticular plate morphology and is required for hearing in human and mouse". EMBO Molecular Medicine. 15 (11): 2. doi:10.15252/emmm.202317611 – via PubMed.
- ^ Higashi, Tomohito; Saito, Akira C.; Chiba, Hideki (2024). "Damage control of epithelial barrier function in dynamic environments". European Journal of Cell Biology. 103 (2): 2. doi:10.1016/j.ejcb.2024.151410. PMID 38579602.
- ^ Martínez, Cristina; Rodiño-Janeiro, Bruno K.; Lobo, Beatriz; Stanifer, Megan L.; Klaus, Bernd; Granzow, Martin; González-Castro, Ana M.; Salvo-Romero, Eloisa; Alonso-Cotoner, Carmen; Pigrau, Marc; Roeth, Ralph; Rappold, Gudrun; Huber, Wolfgang; González-Silos, Rosa; Lorenzo, Justo; Torres, Inés de; Azpiroz, Fernando; Boulant, Steeve; Vicario, María; Niesler, Beate; Santos, Javier (1 September 2017). "miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea". Gut. 66 (9): 1606. doi:10.1136/gutjnl-2016-311477. ISSN 0017-5749. PMID 28082316.
- ^ Vera, Janssen; Stephan, Huveneers (15 October 2024). "Cell–cell junctions in focus – imaging junctional architectures and dynamics at high resolution". Journal of Cell Science. 137 (20): 4. doi:10.1242/jc (inactive 15 December 2025). ISSN 0021-9533.
{{cite journal}}: CS1 maint: DOI inactive as of December 2025 (link) - ^ Braga, Vania (2018). "Signaling by Small GTPases at Cell-Cell Junctions: Protein Interactions Building Control and Networks". Cold Spring Harbor Perspectives in Biology. 10 (10): 11. doi:10.1101/cshperspect.a028746. PMC 6169809. PMID 28893858 – via PubMed.
- ^ Ebnet, Klaus; Gerke, Volker (2022). "Rho and Rab Family Small GTPases in the Regulation of Membrane Polarity in Epithelial Cells". Frontiers in Cell and Developmental Biology. 10 948013: 6. doi:10.3389/fcell.2022.948013. PMC 9289151. PMID 35859901.
- ^ Troyanovsky, R. B.; Klingelhöfer, Jörg; Troyanovsky, Sergey (1999). "Removal of calcium ions triggers a novel type of intercadherin interaction". Journal of Cell Science. 112 (23): 4384. doi:10.1242/jcs.112.23.4379. PMID 10564655 – via PubMed.
- ^ Rathman, M.; de Lanerolle, P.; Ohayon, H.; Gounon, P.; Sansonetti, P. (2000). "Myosin light chain kinase plays an essential role in S. flexneri dissemination". Journal of Cell Science. 113 (Pt 19): 3376. doi:10.1242/jcs.113.19.3375. PMID 10984429.
- ^ Danilchik, Michael V; Bedrick, Steven D; Brown, Elizabeth E; Ray, Kimberly (2003). "Furrow microtubules and localized exocytosis in cleaving Xenopus laevis embryos". Journal of Cell Science. 116 (Pt 2): 281. doi:10.1242/jcs.00217. PMID 12482913.
- ^ Eckert, Judith J.; Fleming, Tom P. (2008). "Tight junction biogenesis during early development". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1778 (3): 721. doi:10.1016/j.bbamem.2007.09.031. PMID 18339299.
- ^ Smales, Caroline; Ellis, Moira; Baumber, Rachel; Hussain, Nayer; Desmond, Howard; Staddon, James M. (2003). "Occludin phosphorylation: identification of an occludin kinase in brain and cell extracts as CK2". FEBS Letters. 545 (2–3): 161–166. Bibcode:2003FEBSL.545..161S. doi:10.1016/s0014-5793(03)00525-8. PMID 12804768.
- ^ Cheng, C. Yan; Mruk, Dolores D. (2002). "Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development". Physiological Reviews. 82 (4): 837. Bibcode:2002PhyRv..82..825C. doi:10.1152/physrev.00009.2002. PMID 12270945.
- ^ Otani, Tetsuhisa; Furuse, Mikio (1 October 2020). "Tight Junction Structure and Function Revisited". Trends in Cell Biology. 30 (10): 814. doi:10.1016/j.tcb.2020.08.004. ISSN 0962-8924. PMID 32891490.
- ^ Eaton, Amity F; Clayton, Dennis R; Ruiz, Wily G; Griffiths, Shawn E; Rubio, Maria Eulalia; Apodaca, Gerard (2019). "Expansion and contraction of the umbrella cell apical junctional ring in response to bladder filling and voiding". Molecular Biology of the Cell. 30 (16): 2038. doi:10.1091/mbc.E19-02-0115. PMC 6727774. PMID 31166831.
- ^ D., Chalmers, Andrew; Paul, Whitley; D., Chalmers, Andrew; Paul, Whitley (2012). "Continuous endocytic recycling of tight junction proteins: how and why?". Essays in Biochemistry. 53: 41–54. doi:10.1042/bse0530041. ISSN 0071-1365. PMID 22928507.
{{cite journal}}: CS1 maint: multiple names: authors list (link) - ^ Cohen, David; Fernandez, Dawn; Lázaro-Diéguez, Francisco; Überheide, Beatrix; Müsch, Anne (2024). "Borg5 restricts contractility and motility in epithelial MDCK cells". Journal of Cell Science. 137 (23) jcs261705. doi:10.1242/jcs.261705. PMID 39503295.
- ^ Pinto-Dueñas, Diana Cristina; Hernández-Guzmán, Christian; Marsch, Patrick Matthew; Wadurkar, Anand Sunil; Martín-Tapia, Dolores; Alarcón, Lourdes; Vázquez-Victorio, Genaro; Méndez-Méndez, Juan Vicente; Chanona-Pérez, José Jorge; Nangia, Shikha; González-Mariscal, Lorenza (2024). "The Role of ZO-2 in Modulating JAM-A and γ-Actin Junctional Recruitment, Apical Membrane and Tight Junction Tension, and Cell Response to Substrate Stiffness and Topography". International Journal of Molecular Sciences. 25 (5): 24. doi:10.3390/ijms25052453. PMC 10930961. PMID 38473701.
- ^ Fernandes, João; Karra, Nikita; Bowring, Joel; Reale, Riccardo; James, Jonathan; Blume, Cornelia; Pell, Theresa J.; Rowan, Wendy C.; Davies, Donna E.; Swindle, Emily J.; Morgan, Hywel (2022). "Real-time monitoring of epithelial barrier function by impedance spectroscopy in a microfluidic platform". Lab on a Chip. 22 (10): 2050. doi:10.1039/D1LC01046H. PMID 35485428.
- ^ Lutsenko, Svetlana; Roy, Shubhrajit; Tsvetkov, Peter (January 2025). "Mammalian copper homeostasis: physiological roles and molecular mechanisms". Physiological Reviews. 105 (1): 457. doi:10.1152/physrev.00011.2024. ISSN 0031-9333. PMC 11918410. PMID 39172219.
- ^ Rosenbaum, David; Saftig, Paul (2024). "New insights into the function and pathophysiology of the ectodomain sheddase A Disintegrin And Metalloproteinase 10 (ADAM10)". FEBS Journal. 291 (13): 2751. doi:10.1111/febs.16870. PMID 37218105.
- ^ a b Chao, Yu-Chih; Pan, Szu-Hua; Yang, Shuenn-Chen; Yu, Sung-Liang; Che, Ting-Fang; Lin, Chung-Wu; Tsai, Mu-Shiun; Chang, Gee-Chen; Wu, Che-Hsiang; Wu, Yi-Ying; Lee, Yung-Chie; Hong, Tse-Ming; Yang, Pan-Chyr (15 January 2009). "Claudin-1 Is a Metastasis Suppressor and Correlates with Clinical Outcome in Lung Adenocarcinoma". American Journal of Respiratory and Critical Care Medicine. 179 (2): 124. doi:10.1164/rccm.200803-456OC. ISSN 1073-449X. PMID 18787218.
- ^ a b Jeung, Hei-Cheul; Puentes, Roisin; Aleshin, Alexander; Indarte, Martin; Correa, Ricardo G.; Bankston, Laurie A.; Layng, Fabiana I. A. L.; Ahmed, Zamal; Wistuba, Ignacio; Yao, Yong; Duenas, Daniela G.; Zhang, Shuxing; Meuillet, Emmanuelle J.; Marassi, Francesca; Liddington, Robert C.; Kirkpatrick, Lynn; Powis, Garth (2021). "PLEKHA7 signaling is necessary for the growth of mutant KRAS driven colorectal cancer". Experimental Cell Research. 409 (2): 2. doi:10.1016/j.yexcr.2021.112930. ISSN 0014-4827. PMID 34800542.
- ^ "BIO". unige.ch. Retrieved September 8, 2025.