In mathematics , the Remez inequality , discovered by the Soviet mathematician Evgeny Yakovlevich Remez (Remez 1936 ), gives a bound on the sup norms of certain polynomials , the bound being attained by the Chebyshev polynomials .
Let σ be an arbitrary fixed positive number. Define the class of polynomials πn (σ ) to be those polynomials p of degree n for which
|
p
(
x
)
|
≤
1
{\displaystyle |p(x)|\leq 1}
on some set of measure ≥ 2 contained in the closed interval [−1, 1+σ ]. Then the Remez inequality states that
sup
p
∈
π
n
(
σ
)
‖
p
‖
∞
=
‖
T
n
‖
∞
{\displaystyle \sup _{p\in \pi _{n}(\sigma )}\left\|p\right\|_{\infty }=\left\|T_{n}\right\|_{\infty }}
where T n (x ) is the Chebyshev polynomial of degree n , and the supremum norm is taken over the interval [−1, 1+σ ].
Observe that T n is increasing on
[
1
,
+
∞
]
{\displaystyle [1,+\infty ]}
, hence
‖
T
n
‖
∞
=
T
n
(
1
+
σ
)
.
{\displaystyle \|T_{n}\|_{\infty }=T_{n}(1+\sigma ).}
The R.i., combined with an estimate on Chebyshev polynomials, implies the following corollary : If J ⊂ R is a finite interval, and E ⊂ J is an arbitrary measurable set , then
max
x
∈
J
|
p
(
x
)
|
≤
(
4
mes
J
mes
E
)
n
sup
x
∈
E
|
p
(
x
)
|
{\displaystyle \max _{x\in J}|p(x)|\leq \left({\frac {4\,\,\operatorname {mes} J}{\operatorname {mes} E}}\right)^{n}\sup _{x\in E}|p(x)|}
⁎
for any polynomial p of degree n .
Extensions: Nazarov–Turán lemma[ edit ]
Inequalities similar to (⁎ ) have been proved for different classes of functions , and are known as Remez-type inequalities. One important example is Nazarov 's inequality for exponential sums (Nazarov 1993 ):
Nazarov's inequality . Let
p
(
x
)
=
∑
k
=
1
n
a
k
e
λ
k
x
{\displaystyle p(x)=\sum _{k=1}^{n}a_{k}e^{\lambda _{k}x}}
be an exponential sum (with arbitrary λ k ∈C ), and let J ⊂ R be a finite interval, E ⊂ J —an arbitrary measurable set. Then
max
x
∈
J
|
p
(
x
)
|
≤
e
max
k
|
ℜ
λ
k
|
mes
J
(
C
mes
J
mes
E
)
n
−
1
sup
x
∈
E
|
p
(
x
)
|
,
{\displaystyle \max _{x\in J}|p(x)|\leq e^{\max _{k}|\Re \lambda _{k}|\,\operatorname {mes} J}\left({\frac {C\,\,\operatorname {mes} J}{\operatorname {mes} E}}\right)^{n-1}\sup _{x\in E}|p(x)|~,}
where C > 0 is a numerical constant.
In the special case when λk are pure imaginary and integer, and the subset E is itself an interval, the inequality was proved by Pál Turán and is known as Turán's lemma.
This inequality also extends to
L
p
(
T
)
,
0
≤
p
≤
2
{\displaystyle L^{p}(\mathbb {T} ),\ 0\leq p\leq 2}
in the following way
‖
p
‖
L
p
(
T
)
≤
e
A
(
n
−
1
)
mes
(
T
∖
E
)
‖
p
‖
L
p
(
E
)
{\displaystyle \|p\|_{L^{p}(\mathbb {T} )}\leq e^{A(n-1)\operatorname {mes} (\mathbb {T} \setminus E)}\|p\|_{L^{p}(E)}}
for some A > 0 independent of p , E , and n . When
mes
E
<
1
−
log
n
n
{\displaystyle \operatorname {mes} E<1-{\frac {\log n}{n}}}
a similar inequality holds for p > 2. For p = ∞ there is an extension to multidimensional polynomials.
Proof: Applying Nazarov's lemma to
E
=
E
λ
=
{
x
:
|
p
(
x
)
|
≤
λ
}
,
λ
>
0
{\displaystyle E=E_{\lambda }=\{x:|p(x)|\leq \lambda \},\ \lambda >0}
leads to
max
x
∈
J
|
p
(
x
)
|
≤
e
max
k
|
ℜ
λ
k
|
mes
J
(
C
mes
J
mes
E
λ
)
n
−
1
sup
x
∈
E
λ
|
p
(
x
)
|
≤
e
max
k
|
ℜ
λ
k
|
mes
J
(
C
mes
J
mes
E
λ
)
n
−
1
λ
{\displaystyle \max _{x\in J}|p(x)|\leq e^{\max _{k}|\Re \lambda _{k}|\,\operatorname {mes} J}\left({\frac {C\,\,\operatorname {mes} J}{\operatorname {mes} E_{\lambda }}}\right)^{n-1}\sup _{x\in E_{\lambda }}|p(x)|\leq e^{\max _{k}|\Re \lambda _{k}|\,\operatorname {mes} J}\left({\frac {C\,\,\operatorname {mes} J}{\operatorname {mes} E_{\lambda }}}\right)^{n-1}\lambda }
thus
mes
E
λ
≤
C
mes
J
(
λ
e
max
k
|
ℜ
λ
k
|
mes
J
max
x
∈
J
|
p
(
x
)
|
)
1
n
−
1
{\displaystyle \operatorname {mes} E_{\lambda }\leq C\,\,\operatorname {mes} J\left({\frac {\lambda e^{\max _{k}|\Re \lambda _{k}|\,\operatorname {mes} J}}{\max _{x\in J}|p(x)|}}\right)^{\frac {1}{n-1}}}
Now fix a set
E
{\displaystyle E}
and choose
λ
{\displaystyle \lambda }
such that
mes
E
λ
≤
1
2
mes
E
{\displaystyle \operatorname {mes} E_{\lambda }\leq {\tfrac {1}{2}}\operatorname {mes} E}
, that is
λ
=
(
mes
E
2
C
mes
J
)
n
−
1
e
−
max
k
|
ℜ
λ
k
|
mes
J
max
x
∈
J
|
p
(
x
)
|
{\displaystyle \lambda =\left({\frac {\operatorname {mes} E}{2C\operatorname {mes} J}}\right)^{n-1}e^{-\max _{k}|\Re \lambda _{k}|\,\operatorname {mes} J}\max _{x\in J}|p(x)|}
Note that this implies:
mes
E
∖
E
λ
≥
1
2
mes
E
.
{\displaystyle \operatorname {mes} E\setminus E_{\lambda }\geq {\tfrac {1}{2}}\operatorname {mes} E.}
∀
x
∈
E
∖
E
λ
:
|
p
(
x
)
|
>
λ
.
{\displaystyle \forall x\in E\setminus E_{\lambda }:|p(x)|>\lambda .}
Now
∫
x
∈
E
|
p
(
x
)
|
p
d
x
≥
∫
x
∈
E
∖
E
λ
|
p
(
x
)
|
p
d
x
≥
λ
p
1
2
mes
E
=
1
2
mes
E
(
mes
E
2
C
mes
J
)
p
(
n
−
1
)
e
−
p
max
k
|
ℜ
λ
k
|
mes
J
max
x
∈
J
|
p
(
x
)
|
p
≥
1
2
mes
E
mes
J
(
mes
E
2
C
mes
J
)
p
(
n
−
1
)
e
−
p
max
k
|
ℜ
λ
k
|
mes
J
∫
x
∈
J
|
p
(
x
)
|
p
d
x
,
{\displaystyle {\begin{aligned}\int _{x\in E}|p(x)|^{p}\,{\mbox{d}}x&\geq \int _{x\in E\setminus E_{\lambda }}|p(x)|^{p}\,{\mbox{d}}x\\[6pt]&\geq \lambda ^{p}{\frac {1}{2}}\operatorname {mes} E\\[6pt]&={\frac {1}{2}}\operatorname {mes} E\left({\frac {\operatorname {mes} E}{2C\operatorname {mes} J}}\right)^{p(n-1)}e^{-p\max _{k}|\Re \lambda _{k}|\,\operatorname {mes} J}\max _{x\in J}|p(x)|^{p}\\[6pt]&\geq {\frac {1}{2}}{\frac {\operatorname {mes} E}{\operatorname {mes} J}}\left({\frac {\operatorname {mes} E}{2C\operatorname {mes} J}}\right)^{p(n-1)}e^{-p\max _{k}|\Re \lambda _{k}|\,\operatorname {mes} J}\int _{x\in J}|p(x)|^{p}\,{\mbox{d}}x,\end{aligned}}}
which completes the proof.
One of the corollaries of the Remez inequality is the Pólya inequality , which was proved by George Pólya (Pólya 1928 ), and states that the Lebesgue measure of a sub-level set of a polynomial p of degree n is bounded in terms of the leading coefficient LC(p ) as follows:
mes
{
x
∈
R
:
|
P
(
x
)
|
≤
a
}
≤
4
(
a
2
L
C
(
p
)
)
1
/
n
,
a
>
0
.
{\displaystyle \operatorname {mes} \left\{x\in \mathbb {R} :\left|P(x)\right|\leq a\right\}\leq 4\left({\frac {a}{2\mathrm {LC} (p)}}\right)^{1/n},\quad a>0~.}
Remez, E. J. (1936). "Sur une propriété des polynômes de Tchebyscheff". Comm. Inst. Sci. Kharkow . 13 : 93– 95.
Bojanov, B. (May 1993). "Elementary Proof of the Remez Inequality". The American Mathematical Monthly . 100 (5). Mathematical Association of America: 483– 485. doi :10.2307/2324304 . JSTOR 2324304 .
Fontes-Merz, N. (2006). "A multidimensional version of Turan's lemma" . Journal of Approximation Theory . 140 (1): 27– 30. doi :10.1016/j.jat.2005.11.012 .
Nazarov, F. (1993). "Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type". Algebra i Analiz . 5 (4): 3– 66.
Nazarov, F. (2000). "Complete Version of Turan's Lemma for Trigonometric Polynomials on the Unit Circumference". Complex Analysis, Operators, and Related Topics . Vol. 113. pp. 239– 246. doi :10.1007/978-3-0348-8378-8_20 . ISBN 978-3-0348-9541-5 .
Pólya, G. (1928). "Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete". Sitzungsberichte Akad. Berlin : 280– 282.