List of petawatt lasers

This page contains a list of petawatt-level lasers in operation, under construction, or proposed. The list is compiled from existing academic reviews.[1][2]
A petawatt laser is typically defined as a laser system whose pulse energy divided by its pulse duration reaches an order of magnitude of 1015 W, or 1 petawatt. These high-power laser pulses are capable of driving a strong electromagnetic field, giving rise to a number of novel applications. For instance, focusing large numbers of petawatt level lasers on a target containing deuterium and tritium creates enough energy density to drive inertial confinement fusion. Another potential application is using strong electric fields from petawatt laser pulses to drive steep density gradient structures in a plasma, which then creates field gradients capable of accelerating particles in a much shorter distance than linac; such concept is known as laser wakefield acceleration. In addition, as the laser pulse itself reaches extremely high field intensity, interaction of the high-energy particle beam with a petawatt laser pulse can achieve interactions with intensity beyond the Schwinger limit, enabling possible observation of effects such as vacuum polarization and Breit-Wheeler process.[3]
Generation of a petawatt laser pulse requires the pulse duration to be extremely short: to reach 1 petawatt of power, a 1 joule laser pulse will require a duration of <1 fs (< 10−15 seconds). All petawatt systems (with the exception of the National Ignition Facility) use the technique of chirped pulse amplification, which amplifies chirped, temporally stretched laser pulses before compressing them into femtosecond, ultra-high intensity pulses. For laser systems with large pulse energies, Nd:glass is typically used as a gain medium, as they can be grown into very large crystals. For laser pulses with duration near the femtosecond range, Ti:Sapphire is widely used to take advantage of its wide lasing spectrum; only such lasers can be compressed into ultrashort pulses, due to Fourier relations between the temporal and spectral widths of the pulse signal.
Petawatt lasers
[edit]The following list contains laser systems with petawatt-class peak power. Although there is not a precise definition for "petawatt-class" lasers, the list include all systems with peak power >=0.5 PW.
High average power lasers
[edit]A number of petawatt or sub-petawatt laser systems are notable for being capable of operating at high repetition rates (HRR). These laser systems are high average power (HAP) lasers, delivering high power when averaged over macroscopic time scale yet still maintaining terawatt or petawatt peak power within a single pulse. HAP petawatt lasers are crucial for any future applications of petawatt laser systems such as compact light sources, next-generation accelerators, or proton source for radiotherapy; in scientific research facilities, they also greatly improve experiment efficiency by enabling a much large set of experimental data to be collected within the same amount of beam time. On the other hand, designing and operating petawatt laser systems at high repetition rate presents an immense engineering challenge, as the laser system must handle large amounts of excessive heat when pumped at a much higher frequency as well as thermal effects that degrades beam quality. In recent years, advances in high-power laser technology,[2] such as pumping schemes, pump light sources, and cyrogenic cooling, led to the emergence of a new class of HAP laser systems.
Addressing the important of high average power lasers as the future development of petawatt lasers, the following list contains a list of laser systems with peak power >=100 TW and average power >=100 W. Note that some lasers in the list are already petawatt-class lasers.
| Facility | Institution | Location | Classification | Pulse energy (J) |
Pulse duration (fs) |
Peak power (PW) |
Repetition rate (Hz) | Average power (kW) | Status |
|---|---|---|---|---|---|---|---|---|---|
| ELI-B L2 DUHA[33] | Extreme Light Infrastructure | OPCPA | 3 | 25 | 0.12 | 50 | 0.15 | Commission | |
| ELI-B L3 HAPLS | Extreme Light Infrastructure Lawrence Livermore National Laboratory |
Ti:sapphire | 30 | 30 | 1 | 10 | 0.3 | Commission | |
| ELI-ALPS HF | Extreme Light Infrastructure | OPCPA | 34 | 17 | 2 | 10 | 0.34 | Commission | |
| LAPLACE-HC[34] | Laboratoire d'optique appliquée | Ti:Sapphire | 1 | 25 | 0.04 | 100 | 0.1 | Construction | |
| PENELOPE | GSI Helmholtz | Yb:glass/CaF2 | 150 | 150 | 1 | 1 | 0.15 | Construction | |
| KALDERA[35] | DESY | Ti:sapphire | 3 | 30 | 0.1 | 1000 | 3 | Construction | |
| EPAC | Central Laser Facility, Rutherford Appleton Laboratory | Ti:sapphire | 30 | 30 | 1 | 10 | 0.3 | Construction | |
| k-BELLA[20] | Lawrence Berkeley National Laboratory | Ti:sapphire | 3 | 30 | 0.1 | 1000 | 3 | Design | |
| SHARC[36] | LCLS-II Lawrence Livermore National Laboratory |
Nd:glass | 150 | 150 | 1 | 10 | 1.5 | Design | |
| BAT[37] | Lawrence Livermore National Laboratory | Tm:YLF | 30 | 100 | 0.3 | 10000 | 300 | Construction |
Gallery
[edit]-
NOVA, the first petawatt class laser, at Lawrence Livermore National Laboratory, USA
-
The GEKKO XII laser at Osaka University, Japan
-
The L3 HAPLS system at ELI Beamline, Czech Republic
-
Diffraction grating of the OMEGA EP laser, showing colors reflected from multilayer dielectric coating (MLD)
-
A picture showing the interaction chamber of the Apollon laser during commission
-
A multi-pass amplifier of the DRACO laser at Helmholtz-Zentrum Dresden-Rossendorf, Germany
See also
[edit]References
[edit]- ^ Li, Zhaoyang; Leng, Yuxin; Li, Ruxin (2022). "Further Development of the Short-Pulse Petawatt Laser: Trends, Technologies, and Bottlenecks". Laser & Photonics Reviews. 17 (3) 2100705. doi:10.1002/lpor.202100705.
- ^ a b Danson, Colin N.; et al. (2019). "Petawatt and exawatt class lasers worldwide". High Power Laser Science and Engineering. 7 e54. Bibcode:2019HPLSE...7E..54D. doi:10.1017/hpl.2019.36.
- ^ Di Piazza, A.; Müller, C.; Hatsagortsyan, K. Z.; Keitel, C. H. (2012-08-16). "Extremely high-intensity laser interactions with fundamental quantum systems". Reviews of Modern Physics. 84 (3): 1177–1228. arXiv:1111.3886. doi:10.1103/RevModPhys.84.1177. ISSN 0034-6861. Retrieved 2025-11-02.
- ^ Gaul, Erhard W.; et al. (2010). "Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier". Applied Optics. 49 (9): 1676–1681. Bibcode:2010ApOpt..49.1676G. doi:10.1364/AO.49.001676. PMID 20300167.
- ^ "Texas Petawatt Laser". The University of Texas at Austin. Retrieved 5 February 2025.
- ^ Xu, Guang; Wang, Tao; Li, Zhaoyang; Dai, Yaping; Lin, Zunqi; Gu, Yuan; Zhu, Jianqiang (2008). "1 kJ Petawatt Laser System for SG-II-U Program". The Review of Laser Engineering. 36: 1172–1175. doi:10.2184/lsj.36.1172.
- ^ a b Weber, S.; Bechet, S.; Borneis, S.; Brabec, L.; Bučka, M.; Chacon-Golcher, E.; Ciappina, M.; DeMarco, M.; Fajstavr, A.; Falk, K.; Garcia, E.-R.; Grosz, J.; Gu, Y.-J.; Hernandez, J.-C.; Holec, M.; Janečka, P.; Jantač, M.; Jirka, M.; Kadlecova, H.; Khikhlukha, D.; Klimo, O.; Korn, G.; Kramer, D.; Kumar, D.; Lastovička, T.; Lutoslawski, P.; Morejon, L.; Olšovcová, V.; Rajdl, M.; Renner, O.; Rus, B.; Singh, S.; Šmid, M.; Sokol, M.; Versaci, R.; Vrána, R.; Vranic, M.; Vyskočil, J.; Wolf, A.; Yu, Q. (2017-07-01). "P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines". Matter and Radiation at Extremes. 2 (4): 149–176. doi:10.1016/j.mre.2017.03.003. ISSN 2468-2047.
- ^ Radier, Christophe; Chalus, Olivier; Charbonneau, Mathilde; Thambirajah, Shanjuhan; Deschamps, Guillaume; David, Stephane; Barbe, Julien; Etter, Eric; Matras, Guillaume; Ricaud, Sandrine; Leroux, Vincent; Richard, Caroline; Lureau, François; Baleanu, Andrei; Banici, Romeo; Gradinariu, Andrei; Caldararu, Constantin; Capiteanu, Cristian; Naziru, Andrei; Diaconescu, Bogdan; Iancu, Vicentiu; Dabu, Razvan; Ursescu, Daniel; Dancus, Ioan; Ur, Calin Alexandru; Tanaka, Kazuo A.; Zamfir, Nicolae Victor (2022). "10 PW peak power femtosecond laser pulses at ELI-NP" (PDF). High Power Laser Science and Engineering. 10. doi:10.1017/hpl.2022.11. ISSN 2095-4719. Retrieved 2025-11-01.
- ^ Kühn, Sergei; Dumergue, Mathieu; Kahaly, Subhendu; Mondal, Sudipta; Füle, Miklós; Csizmadia, Tamás; Farkas, Balázs; Major, Balázs; Várallyay, Zoltán; Cormier, Eric; Kalashnikov, Mikhail; Calegari, Francesca; Devetta, Michele; Frassetto, Fabio; Månsson, Erik; Poletto, Luca; Stagira, Salvatore; Vozzi, Caterina; Nisoli, Mauro; Rudawski, Piotr; Maclot, Sylvain; Campi, Filippo; Wikmark, Hampus; Arnold, Cord L; Heyl, Christoph M; Johnsson, Per; L'Huillier, Anne; Lopez-Martens, Rodrigo; Haessler, Stefan; Bocoum, Maïmona; Boehle, Frederik; Vernier, Aline; Iaquaniello, Gregory; Skantzakis, Emmanuel; Papadakis, Nikos; Kalpouzos, Constantinos; Tzallas, Paraskevas; Lépine, Franck; Charalambidis, Dimitris; Varjú, Katalin; Osvay, Károly; Sansone, Giuseppe (2017-07-14). "The ELI-ALPS facility: the next generation of attosecond sources". Journal of Physics B: Atomic, Molecular and Optical Physics. 50 (13): 132002. doi:10.1088/1361-6455/aa6ee8. hdl:11311/1031951. ISSN 0953-4075. Retrieved 2025-11-02.
- ^ Yao, Weipeng; Lelièvre, Ronan; Cohen, Itamar; Waltenspiel, Tessa; Allaoua, Amokrane; Antici, Patrizio; Ayoul, Yohann; Beck, Arie; Beluze, Audrey; Blancard, Christophe; Cavanna, Daniel; Chabanis, Mélanie; Chen, Sophia N.; Cohen, Erez; Cossé, Philippe; Ducasse, Quentin; Dumergue, Mathieu; Hai, Fouad El; Evrard, Christophe; Filippov, Evgeny; Freneaux, Antoine; Gautier, Donald Cort; Gobert, Fabrice; Goupille, Franck; Grech, Mickael; Gremillet, Laurent; Heller, Yoav; d'Humières, Emmanuel; Lahmar, Hanna; Lancia, Livia; Lebas, Nathalie; Lecherbourg, Ludovic; Marchand, Stéphane; Mataja, Damien; Meyniel, Gabriel; Michaeli, David; Papadopoulos, Dimitris; Perez, Frédéric; Pikuz, Sergey; Pomerantz, Ishay; Renaudin, Patrick; Romagnani, Lorenzo; Trompier, François; Veuillot, Edouard; Vinchon, Thibaut; Mathieu, François; Fuchs, Julien (2025-04-01). "Characterization and performance of the Apollon main short-pulse laser beam following its commissioning at 2 PW level". Physics of Plasmas. 32 (4) 043106. arXiv:2412.09267. Bibcode:2025PhPl...32d3106Y. doi:10.1063/5.0252874. ISSN 1070-664X.
- ^ Schramm, U; Bussmann, M; Irman, A; Siebold, M; Zeil, K; Albach, D; Bernert, C; Bock, S; Brack, F; Branco, J; Couperus, Jp; Cowan, Te; Debus, A; Eisenmann, C; Garten, M; Gebhardt, R; Grams, S; Helbig, U; Huebl, A; Kluge, T; Köhler, A; Krämer, Jm; Kraft, S; Kroll, F; Kuntzsch, M; Lehnert, U; Loeser, M; Metzkes, J; Michel, P; Obst, L; Pausch, R; Rehwald, M; Sauerbrey, R; Schlenvoigt, Hp; Steiniger, K; Zarini, O (2017). "First results with the novel petawatt laser acceleration facility in Dresden". Journal of Physics: Conference Series. 874 012028. doi:10.1088/1742-6596/874/1/012028. ISSN 1742-6588. Retrieved 2025-11-01.
- ^ Hartmann, Jens; Rösch, Thomas; Balling, Felix; Berndl, Marc; Flaig, Lotta; Gerlach, Sonja; Tischendorf, Luisa; Schreiber, Jörg (2021-04-18). Commissioning of the laser-driven ion acceleration beamline at the Centre for Advanced Laser Applications. SPIE. p. 21. arXiv:2111.08461. doi:10.1117/12.2592407. ISBN 978-1-5106-4392-5. Retrieved 2025-11-01.
- ^ Siebold, Mathias; Roeser, Fabian; Loeser, Markus; Albach, Daniel; Schramm, Ulrich (2013-05-07). PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments. p. 878005. doi:10.1117/12.2017522. Retrieved 2025-11-02.
- ^ "1-PW LASER SYSTEM". CETAL. Retrieved 1 November 2025.
- ^ Lozhkarev, V V; Freidman, G I; Ginzburg, V N; Katin, E V; Khazanov, E A; Kirsanov, A V; Luchinin, G A; Mal'shakov, A N; Martyanov, M A; Palashov, O V; Poteomkin, A K; Sergeev, A M; Shaykin, A A; Yakovlev, I V (2007-06-01). "Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals". Laser Physics Letters. 4 (6): 421–427. doi:10.1002/lapl.200710008. ISSN 1612-2011. Retrieved 2025-11-01.
- ^ Roso, Luis (2011-05-21). Salamanca Pulsed Laser Center: the Spanish petawatt. p. 800113. doi:10.1117/12.894556. Retrieved 2025-11-01.
- ^ J. Hooker, Chris; L. Collier, John; Chekhlov, Oleg; J. Clarke, Robert; J. Divall, Edwin; Ertel, Klaus; Foster, Peta; Hancock, Steve; J. Hawkes, Steve; Holligan, Paul; J. Langley, Andrew; J. Lester, William; Neely, David; T. Parry, Bryn; E. Wyborn, Brian (2009). "The Astra Gemini Petawatt Ti:Sapphire Laser". The Review of Laser Engineering. 37 (6): 443–448. doi:10.2184/lsj.37.443. ISSN 0387-0200. Retrieved 2025-11-01.
- ^ Wojtusiak, Agnieszka; Phillips, Jonathan; Smith, Jodie; Mason, Paul; De Vido, Mariastefania; Butcher, Thomas; Hernandez Gomez, Cristina; Edwards, Chris; Collier, John (2023-06-09). Extreme photonics applications centre: high energy DPSSL pump for a 10 Hz PW-level laser (PDF). SPIE. p. 10. doi:10.1117/12.2665736. ISBN 978-1-5106-6274-2. Retrieved 2025-11-01.
- ^ Wang, Yong; Wang, Shoujun; Rockwood, Alex; Luther, Bradley M.; Hollinger, Reed; Curtis, Alden; Calvi, Chase; Menoni, Carmen S.; Rocca, Jorge J. (2017-10-01). "085 PW laser operation at 33 Hz and high-contrast ultrahigh-intensity λ = 400 nm second-harmonic beamline". Optics Letters. 42 (19): 3828. doi:10.1364/OL.42.003828. hdl:10217/206006. ISSN 0146-9592.
- ^ a b Leemans, WP; Daniels, J; Deshmukh, A; Gonsalves, AJ; Magana, A; Mao, HS; Mittelberger, DE; Nakamura, K; Riley, JR; Syversrud, D; Toth, C; Ybarrolaza, N. "BELLA laser and operations". Proceedings of PAC2013: 1097–1100.
- ^ Liu, Cheng; Banerjee, Sudeep; Zhang, Jun; Chen, Shouyuan; Brown, Kevin; Mills, Jared; Powers, Nathan; Zhao, Baozhen; Golovin, Gregory; Ghebregziabher, Isaac; Umstadter, Donald (2013-03-06). Repetitive petawatt-class laser with near-diffraction-limited focal spot and transform-limited pulse duration. p. 859919. doi:10.1117/12.2005008. Retrieved 2025-11-01.
- ^ Maksimchuk, A.; Nees, J.; Hou, B.; Anthony, R.; Bae, J.; Bayer, F.; Burger, M.; Campbell, P. T.; Cardarelli, J.; Contreras, V.; Ernst, N.; Falcoz, F.; Fitzgarrald, R.; Jovanovic, I.; Kalinchenko, G.; Kuranz, C.; Latham, J.; Ma, Y.; McKelvey, A.; Nutting, T.; Qian, Q.; Russell, B. K.; Sucha, G.; Thomas, A. G. R.; Van Camp, R.; Viges, E.; Willingale, L.; Young, G.; Zhang, Q.; Krushelnick, K. (2025-10-01). "The ZEUS multi-petawatt laser system". Physics of Plasmas. 32 (10). doi:10.1063/5.0283440. ISSN 1070-664X.
- ^ Bromage, Jake; Bahk, Seung-Whan; Barczys, Matthew; Bolognesi, Alex; Dorrer, Christophe; Ekanayake, Nagitha; Feng, Chengyong; Hill, Elizabeth; Jeon, Cheonha; Krieger, Michael; Kruschwitz, Brian; Kwiatkowski, Joseph; Power, Erik; Webb, Benjamin; Zuegel, Jonathan D. (2025-06-03). Laser system design and critical technologies for the NSF OPAL project. SPIE. p. 19. doi:10.1117/12.3055413. ISBN 978-1-5106-8860-5. Retrieved 2025-11-01.
- ^ Wang, Zhaohua; Liu, Cheng; Shen, Zhongwei; Zhang, Qing; Teng, Hao; Wei, Zhiyi (2011-08-15). "High-contrast 116 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier". Optics Letters. 36 (16): 3194–3196. Bibcode:2011OptL...36.3194W. doi:10.1364/OL.36.003194. ISSN 0146-9592. PMID 21847205. Retrieved 2025-08-27.
- ^ a b c d Li, Yutong; Chen, Liming; Chen, Min; Liu, Feng; Gu, Yuqiu; Guo, Bing; Hua, Jianfei; Huang, Taiwu; Leng, Yuxin; Li, Fei; Li, Lu; Li, Ruxin; Lin, Chen; Lu, Wei; Lyu, Zhihui; Ma, Wenjun; Ning, Xiaonan; Peng, Yujie; Wan, Yang; Wang, Jinguang; Wang, Zhaohua; Wei, Zhiyi; Yan, Xueqing; Zhang, Jie; Zhao, Baozhen; Zhao, Zengxiu; Zhou, Cangtao; Zhou, Kainan; Zhou, Weimin; Zhu, Jianqiang; Zhu, Ping (2025). "High-intensity lasers and research activities in China". High Power Laser Science and Engineering. 13. doi:10.1017/hpl.2024.69. ISSN 2095-4719.
- ^ Zeng, Xiaoming; et al. (2017). "Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification". Optics Letters. 42 (10): 2014–2017. Bibcode:2017OptL...42.2014Z. doi:10.1364/OL.42.002014. PMID 28504737.
- ^ Guo, Zhen; Yu, Lianghong; Wang, Jianye; Wang, Cheng; Liu, Yanqi; Gan, Zebiao; Li, Wenqi; Leng, Yuxin; Liang, Xiaoyan; Li, Ruxin (2018-10-01). "Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: sapphire chirped pulse amplification laser system". Optics Express. 26 (20) 26776. doi:10.1364/OE.26.026776. ISSN 1094-4087.
- ^ Zhu, Jianqiang; et al. (2018). "Analysis and construction status of SG-II 5PW laser facility". High Power Laser Science and Engineering. 6 e29. Bibcode:2018HPLSE...6E..29Z. doi:10.1017/hpl.2018.23.
- ^ Xu, Dirui; Shen, Baifei; Xu, Jiancai; Liang, Zhenfeng (2020). "XFEL beamline design for vacuum birefringence experiment". Nuclear Instruments and Methods in Physics Research Section A. 982 164553. Bibcode:2020NIMPA.98264553X. doi:10.1016/j.nima.2020.164553.
- ^ Yoon, Jin Woo; Kim, Yeong Gyu; Choi, Il Woo; Sung, Jae Hee; Lee, Hwang Woon; Lee, Seong Ku; Nam, Chang Hee (2021-05-20). "Realization of laser intensity over 10 23 W/cm 2". Optica. 8 (5): 630. doi:10.1364/OPTICA.420520. ISSN 2334-2536.
- ^ Pirozhkov, Alexander S.; Fukuda, Yuji; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Sagisaka, Akito; Ogura, Koichi; Mori, Michiaki; Kishimoto, Maki; Sakaki, Hironao; Dover, Nicholas P.; Kondo, Kotaro; Nakanii, Nobuhiko; Huang, Kai; Kanasaki, Masato; Kondo, Kiminori; Kando, Masaki (2017-08-21). "Approaching the diffraction-limited, bandwidth-limited Petawatt". Optics Express. 25 (17) 20486. doi:10.1364/OE.25.020486. ISSN 1094-4087.
- ^ "The Tata Institute of Fundamental Research (TIFR) has selected Amplitude to provide the first 1PW, 1Hz laser system in India". Amplitude. Retrieved 2025-07-03.
- ^ T. Green, Jonathan; Antipenkov, Roman; Bakule, Pavel; BartoníčEk, Jan; Eisenschreiber, Jan; Fibrich, Martin; Greco, Michael; Indra, Lukáš; Kramer, Daniel; A. Naylon, Jack; NováK, Jakub; šPačEk, Alexandr; Rus, Bedřich (2021). "L2-DUHA 100 TW High Repetition Rate Laser System at ELI-Beamlines: Key Design Considerations". The Review of Laser Engineering. 49 (2): 106. doi:10.2184/lsj.49.2_106. ISSN 0387-0200. Retrieved 2025-11-01.
- ^ "Facilities - LAPLACE". Retrieved 2 November 2025.
- ^ Palmer, Guido; Gonzalez-Diaz, Juan B.; Eichner, Timo; Braun, Cora; Hülsenbusch, Thomas; Werle, Christian M.; Winkelmann, Lutz; Vidoli, Caterina; Schnepp, Matthias; Kirchen, Manuel; Leemans, Wim P.; Maier, Andreas R. (2025-06-03). KALDERA: a high-average power drive-laser for laser plasma acceleration. SPIE. p. 1. doi:10.1117/12.3059070. ISBN 978-1-5106-9249-7. Retrieved 2025-11-02.
- ^ Reagan, Brendan A.; Albrecht, MariAnn; Alessi, David; Ammons, Mark; Banerjee, Saumyabrata; Barillas, Cris; Batysta, Frantisek; Buckley, Brandon; Chemali, Alex; Clark, Erin; Davila, Edwin; Deri, Robert J.; Eseltine, Kevin; Fishler, Barry; Fulkerson, Steve; Galbraith, Justin; Galvin, Thomas; Gonzales, Anthony; Gopalan, Vinod; Herriot, Sandrine; Hubka, Zbnek; Jimenez, Jessica; Kiani, Leily; Koh, Ed; Kupfer, Rotem; Liao, Zhi; Lusk, Jeremy; Nguyen, Hoang; Patel, Ashay; Peer, Aaron; Peterson, John; Plummer, Robert; Schaffers, Kathleen; Sistrunk, Emily; Spinka, Thomas M.; Stolz, Christopher; Tamer, Issa; Tang, Vincent; Telford, Steve; Terzi, Kenneth; Utley, Pamela; Velas, Katherine M.; Vella, Anthony; Wong, Nan (2023-03-14). High repetition rate, high energy petawatt laser for the matter in extreme conditions upgrade. SPIE. p. 17. doi:10.1117/12.2650137. ISBN 978-1-5106-5907-0. Retrieved 2025-11-02.
- ^ Tamer, Issa; Hubka, Zbynek; Kiani, Leily; Owens, Jason; Church, Andrew; Batysta, František; Galvin, Thomas; Willard, Drew; Yandow, Andrew; Galbraith, Justin; Alessi, David; Harthcock, Colin; Hickman, Brad; Jackson, Candis; Nissen, James; Tardiff, Sean; Nguyen, Hoang; Sistrunk, Emily; Spinka, Thomas; Reagan, Brendan A. (2024-03-15). "Demonstration of a 1 TW peak power, joule-level ultrashort Tm:YLF laser". Optics Letters. 49 (6): 1583. doi:10.1364/OL.519542. ISSN 0146-9592. Retrieved 2025-11-02.