List of petawatt lasers

A laser bay of the National Ignition Facility. Inertial confinement fusion is one of the major applications of high peak power lasers in the petawatt scale.

This page contains a list of petawatt-level lasers in operation, under construction, or proposed. The list is compiled from existing academic reviews.[1][2]

A petawatt laser is typically defined as a laser system whose pulse energy divided by its pulse duration reaches an order of magnitude of 1015 W, or 1 petawatt. These high-power laser pulses are capable of driving a strong electromagnetic field, giving rise to a number of novel applications. For instance, focusing large numbers of petawatt level lasers on a target containing deuterium and tritium creates enough energy density to drive inertial confinement fusion. Another potential application is using strong electric fields from petawatt laser pulses to drive steep density gradient structures in a plasma, which then creates field gradients capable of accelerating particles in a much shorter distance than linac; such concept is known as laser wakefield acceleration. In addition, as the laser pulse itself reaches extremely high field intensity, interaction of the high-energy particle beam with a petawatt laser pulse can achieve interactions with intensity beyond the Schwinger limit, enabling possible observation of effects such as vacuum polarization and Breit-Wheeler process.[3]

Generation of a petawatt laser pulse requires the pulse duration to be extremely short: to reach 1 petawatt of power, a 1 joule laser pulse will require a duration of <1 fs (< 10−15 seconds). All petawatt systems (with the exception of the National Ignition Facility) use the technique of chirped pulse amplification, which amplifies chirped, temporally stretched laser pulses before compressing them into femtosecond, ultra-high intensity pulses. For laser systems with large pulse energies, Nd:glass is typically used as a gain medium, as they can be grown into very large crystals. For laser pulses with duration near the femtosecond range, Ti:Sapphire is widely used to take advantage of its wide lasing spectrum; only such lasers can be compressed into ultrashort pulses, due to Fourier relations between the temporal and spectral widths of the pulse signal.

Petawatt lasers

[edit]

The following list contains laser systems with petawatt-class peak power. Although there is not a precise definition for "petawatt-class" lasers, the list include all systems with peak power >=0.5 PW.

Facility Institution Location Classification Pulse energy
(J)
Pulse duration
(fs)
Peak power
(PW)
Status
Nova Lawrence Livermore National Laboratory United States Nd:glass 660 440 1.5 Decommissioned
NIF-ARC Lawrence Livermore National Laboratory United States Nd:glass 400–1700 1300–38 000 1.5 Operation
Texas Petawatt Laser[4][5] University of Texas, Austin United States Nd:glass 186 167 1.1 Operation
Z-PW Sandia National Laboratories United States Nd:glass 500 500 1 Operation
SG-II-PW[6] Shanghai Institute of Optics and Fine Mechanics,
The Chinese Academy of Sciences
(SIOM)
China Nd:glass 1000 1000 1 Operation
Vulcan Central Laser Facility, Rutherford Appleton Laboratory United Kingdom Nd:glass 500 500 1 Operation
Optical Parametric Chirped Pulse Amplification (OPCPA) 400 20 20 Design
Orion Atomic Weapons Establishment United Kingdom Nd:glass 500 500 1 Operation
PHELIX GSI Helmholtz Germany Nd:glass 250 400 0.625 Operation
LMJ-PETAL CEA Cesta France Nd:glass 850 700 1.15 Operation
GEKKO XII-LFEX Osaka University Japan Nd:glass 3000 1500 2 Operation
ELI-B L4[7] Extreme Light Infrastructure Czech Republic Nd:glass 1500 150 10 Commission
ELI-NP[8] Extreme Light Infrastructure Romania OPCPA
Ti:sapphire
242 22.3 10.9 Operation
ELI-B L3 HAPLS[7] Extreme Light Infrastructure
Lawrence Livermore National Laboratory
Czech Republic

United States

Ti:sapphire 30 30 1 at 10 Hz Commission
ELI-ALPS HF[9] Extreme Light Infrastructure Hungary OPCPA 34 17 2 at 10 Hz Commission
Apollon[10] CNRS
École polytechnique
France OPCPA
Ti:sapphire
150 15 10 Commission
DRACO[11] Helmholtz-Zentrum Dresden-Rossendorf Germany Ti:sapphire 30 30 1 Operation
ATLAS[12] Technical University of Munich
Ludwig Maximilian University of Munich
Germany Ti:sapphire 60 25 2.4 Operation
PENELOPE[13] GSI Helmholtz Germany Yb:glass/CaF2 150 150 1 at 1 Hz Construction
CETAL[14] INFLPR Romania Ti:sapphire 25 25 1 Operation
PEARL[15] Institute of Applied Physics, Russian Academy of Sciences Russia Ti:sapphire 24 43 0.56 Operation
OPCPA 4 - 5 Construction
VEGA-3[16] University of Salamanca Spain Ti:sapphire 30 30 1 at 1 Hz Operation
Gemini[17] Central Laser Facility, Rutherford Appleton Laboratory United Kingdom Ti:sapphire 15 30 0.5 Operation
EPAC[18] 30 30 1 at 10 Hz Construction
ALEPH[19] Colorado State University United States Ti:sapphire 26 30 0.87 at 3.3 Hz Operation
BELLA[20] Lawrence Berkeley National Laboratory United States Ti:sapphire 40 30 1.3 Operation
DIOCLES[21] University of Nebraska-Lincoln United States Ti:sapphire 20 30 0.7 Operation
ZEUS[22] University of Michigan United States Ti:sapphire 75 25 3 Commission
12.5 25 0.5
NSF OPAL[23] Laboratory for Laser Energetics, University of Rochester United States OPCPA 550 20 25 Design
XL-III[24] Institute of Physics, Chinese Academy of Science China Ti:sapphire 32 28 1.16 Operation
Huairou PW[25] 25 25 1 Operation
CLAPA-II[25] Peking University China OPCPA
Ti:Sapphire
60 30 2 Commission
BAQIS PW[25] Tsinghua University China Ti:sapphire 30 30 1 at 1 Hz Commission
CAEP-PW[26] China Academy of Engineering Physics China OPCPA 91.1 18.6 4.9 Operation
SULF[27] SIOM
ShanghaiTech University
China Ti:sapphire 216 21 10.3 Operation
TDLI LAP[25] Shanghai Jiao Tong University China Ti:sapphire 80 22 2.5 Construction
SG-II-5 PW[28] SIOM China OPCPA 150 30 5 Construction
SEL-100 PW[29] Shanghai High Repetition Rate XEFL and Extreme Light Facility China OPCPA 1500 15 100 Construction
CoReLS[30] Centre for Relativistic Laser Science, Institute for Basic Science South Korea Ti:sapphire 83 19.4 4.2 Operation
J-KAREN[31] National Institutes for Quantum Science and Technology Japan OPCPA
Ti:sapphire
28/30 33/30 0.85/1 Operation
RRCAT Raja Ramanna Centre for Advanced Technology India Ti:sapphire 25 25 1 at 0.1 Hz Operation
TRISHUL[32] Tata Institute of Fundamental Research Hyderabad India Ti:sapphire 25 25 1 at 1 Hz Construction

High average power lasers

[edit]

A number of petawatt or sub-petawatt laser systems are notable for being capable of operating at high repetition rates (HRR). These laser systems are high average power (HAP) lasers, delivering high power when averaged over macroscopic time scale yet still maintaining terawatt or petawatt peak power within a single pulse. HAP petawatt lasers are crucial for any future applications of petawatt laser systems such as compact light sources, next-generation accelerators, or proton source for radiotherapy; in scientific research facilities, they also greatly improve experiment efficiency by enabling a much large set of experimental data to be collected within the same amount of beam time. On the other hand, designing and operating petawatt laser systems at high repetition rate presents an immense engineering challenge, as the laser system must handle large amounts of excessive heat when pumped at a much higher frequency as well as thermal effects that degrades beam quality. In recent years, advances in high-power laser technology,[2] such as pumping schemes, pump light sources, and cyrogenic cooling, led to the emergence of a new class of HAP laser systems.

Addressing the important of high average power lasers as the future development of petawatt lasers, the following list contains a list of laser systems with peak power >=100 TW and average power >=100 W. Note that some lasers in the list are already petawatt-class lasers.

Facility Institution Location Classification Pulse energy
(J)
Pulse duration
(fs)
Peak power
(PW)
Repetition rate (Hz) Average power (kW) Status
ELI-B L2 DUHA[33] Extreme Light Infrastructure Czech Republic OPCPA 3 25 0.12 50 0.15 Commission
ELI-B L3 HAPLS Extreme Light Infrastructure
Lawrence Livermore National Laboratory
Czech Republic

United States

Ti:sapphire 30 30 1 10 0.3 Commission
ELI-ALPS HF Extreme Light Infrastructure Hungary OPCPA 34 17 2 10 0.34 Commission
LAPLACE-HC[34] Laboratoire d'optique appliquée France Ti:Sapphire 1 25 0.04 100 0.1 Construction
PENELOPE GSI Helmholtz Germany Yb:glass/CaF2 150 150 1 1 0.15 Construction
KALDERA[35] DESY Germany Ti:sapphire 3 30 0.1 1000 3 Construction
EPAC Central Laser Facility, Rutherford Appleton Laboratory United Kingdom Ti:sapphire 30 30 1 10 0.3 Construction
k-BELLA[20] Lawrence Berkeley National Laboratory United States Ti:sapphire 3 30 0.1 1000 3 Design
SHARC[36] LCLS-II
Lawrence Livermore National Laboratory
United States Nd:glass 150 150 1 10 1.5 Design
BAT[37] Lawrence Livermore National Laboratory United States Tm:YLF 30 100 0.3 10000 300 Construction
[edit]

See also

[edit]

References

[edit]
  1. ^ Li, Zhaoyang; Leng, Yuxin; Li, Ruxin (2022). "Further Development of the Short-Pulse Petawatt Laser: Trends, Technologies, and Bottlenecks". Laser & Photonics Reviews. 17 (3) 2100705. doi:10.1002/lpor.202100705.
  2. ^ a b Danson, Colin N.; et al. (2019). "Petawatt and exawatt class lasers worldwide". High Power Laser Science and Engineering. 7 e54. Bibcode:2019HPLSE...7E..54D. doi:10.1017/hpl.2019.36.
  3. ^ Di Piazza, A.; Müller, C.; Hatsagortsyan, K. Z.; Keitel, C. H. (2012-08-16). "Extremely high-intensity laser interactions with fundamental quantum systems". Reviews of Modern Physics. 84 (3): 1177–1228. arXiv:1111.3886. doi:10.1103/RevModPhys.84.1177. ISSN 0034-6861. Retrieved 2025-11-02.
  4. ^ Gaul, Erhard W.; et al. (2010). "Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier". Applied Optics. 49 (9): 1676–1681. Bibcode:2010ApOpt..49.1676G. doi:10.1364/AO.49.001676. PMID 20300167.
  5. ^ "Texas Petawatt Laser". The University of Texas at Austin. Retrieved 5 February 2025.
  6. ^ Xu, Guang; Wang, Tao; Li, Zhaoyang; Dai, Yaping; Lin, Zunqi; Gu, Yuan; Zhu, Jianqiang (2008). "1 kJ Petawatt Laser System for SG-II-U Program". The Review of Laser Engineering. 36: 1172–1175. doi:10.2184/lsj.36.1172.
  7. ^ a b Weber, S.; Bechet, S.; Borneis, S.; Brabec, L.; Bučka, M.; Chacon-Golcher, E.; Ciappina, M.; DeMarco, M.; Fajstavr, A.; Falk, K.; Garcia, E.-R.; Grosz, J.; Gu, Y.-J.; Hernandez, J.-C.; Holec, M.; Janečka, P.; Jantač, M.; Jirka, M.; Kadlecova, H.; Khikhlukha, D.; Klimo, O.; Korn, G.; Kramer, D.; Kumar, D.; Lastovička, T.; Lutoslawski, P.; Morejon, L.; Olšovcová, V.; Rajdl, M.; Renner, O.; Rus, B.; Singh, S.; Šmid, M.; Sokol, M.; Versaci, R.; Vrána, R.; Vranic, M.; Vyskočil, J.; Wolf, A.; Yu, Q. (2017-07-01). "P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines". Matter and Radiation at Extremes. 2 (4): 149–176. doi:10.1016/j.mre.2017.03.003. ISSN 2468-2047.
  8. ^ Radier, Christophe; Chalus, Olivier; Charbonneau, Mathilde; Thambirajah, Shanjuhan; Deschamps, Guillaume; David, Stephane; Barbe, Julien; Etter, Eric; Matras, Guillaume; Ricaud, Sandrine; Leroux, Vincent; Richard, Caroline; Lureau, François; Baleanu, Andrei; Banici, Romeo; Gradinariu, Andrei; Caldararu, Constantin; Capiteanu, Cristian; Naziru, Andrei; Diaconescu, Bogdan; Iancu, Vicentiu; Dabu, Razvan; Ursescu, Daniel; Dancus, Ioan; Ur, Calin Alexandru; Tanaka, Kazuo A.; Zamfir, Nicolae Victor (2022). "10 PW peak power femtosecond laser pulses at ELI-NP" (PDF). High Power Laser Science and Engineering. 10. doi:10.1017/hpl.2022.11. ISSN 2095-4719. Retrieved 2025-11-01.
  9. ^ Kühn, Sergei; Dumergue, Mathieu; Kahaly, Subhendu; Mondal, Sudipta; Füle, Miklós; Csizmadia, Tamás; Farkas, Balázs; Major, Balázs; Várallyay, Zoltán; Cormier, Eric; Kalashnikov, Mikhail; Calegari, Francesca; Devetta, Michele; Frassetto, Fabio; Månsson, Erik; Poletto, Luca; Stagira, Salvatore; Vozzi, Caterina; Nisoli, Mauro; Rudawski, Piotr; Maclot, Sylvain; Campi, Filippo; Wikmark, Hampus; Arnold, Cord L; Heyl, Christoph M; Johnsson, Per; L'Huillier, Anne; Lopez-Martens, Rodrigo; Haessler, Stefan; Bocoum, Maïmona; Boehle, Frederik; Vernier, Aline; Iaquaniello, Gregory; Skantzakis, Emmanuel; Papadakis, Nikos; Kalpouzos, Constantinos; Tzallas, Paraskevas; Lépine, Franck; Charalambidis, Dimitris; Varjú, Katalin; Osvay, Károly; Sansone, Giuseppe (2017-07-14). "The ELI-ALPS facility: the next generation of attosecond sources". Journal of Physics B: Atomic, Molecular and Optical Physics. 50 (13): 132002. doi:10.1088/1361-6455/aa6ee8. hdl:11311/1031951. ISSN 0953-4075. Retrieved 2025-11-02.
  10. ^ Yao, Weipeng; Lelièvre, Ronan; Cohen, Itamar; Waltenspiel, Tessa; Allaoua, Amokrane; Antici, Patrizio; Ayoul, Yohann; Beck, Arie; Beluze, Audrey; Blancard, Christophe; Cavanna, Daniel; Chabanis, Mélanie; Chen, Sophia N.; Cohen, Erez; Cossé, Philippe; Ducasse, Quentin; Dumergue, Mathieu; Hai, Fouad El; Evrard, Christophe; Filippov, Evgeny; Freneaux, Antoine; Gautier, Donald Cort; Gobert, Fabrice; Goupille, Franck; Grech, Mickael; Gremillet, Laurent; Heller, Yoav; d'Humières, Emmanuel; Lahmar, Hanna; Lancia, Livia; Lebas, Nathalie; Lecherbourg, Ludovic; Marchand, Stéphane; Mataja, Damien; Meyniel, Gabriel; Michaeli, David; Papadopoulos, Dimitris; Perez, Frédéric; Pikuz, Sergey; Pomerantz, Ishay; Renaudin, Patrick; Romagnani, Lorenzo; Trompier, François; Veuillot, Edouard; Vinchon, Thibaut; Mathieu, François; Fuchs, Julien (2025-04-01). "Characterization and performance of the Apollon main short-pulse laser beam following its commissioning at 2 PW level". Physics of Plasmas. 32 (4) 043106. arXiv:2412.09267. Bibcode:2025PhPl...32d3106Y. doi:10.1063/5.0252874. ISSN 1070-664X.
  11. ^ Schramm, U; Bussmann, M; Irman, A; Siebold, M; Zeil, K; Albach, D; Bernert, C; Bock, S; Brack, F; Branco, J; Couperus, Jp; Cowan, Te; Debus, A; Eisenmann, C; Garten, M; Gebhardt, R; Grams, S; Helbig, U; Huebl, A; Kluge, T; Köhler, A; Krämer, Jm; Kraft, S; Kroll, F; Kuntzsch, M; Lehnert, U; Loeser, M; Metzkes, J; Michel, P; Obst, L; Pausch, R; Rehwald, M; Sauerbrey, R; Schlenvoigt, Hp; Steiniger, K; Zarini, O (2017). "First results with the novel petawatt laser acceleration facility in Dresden". Journal of Physics: Conference Series. 874 012028. doi:10.1088/1742-6596/874/1/012028. ISSN 1742-6588. Retrieved 2025-11-01.
  12. ^ Hartmann, Jens; Rösch, Thomas; Balling, Felix; Berndl, Marc; Flaig, Lotta; Gerlach, Sonja; Tischendorf, Luisa; Schreiber, Jörg (2021-04-18). Commissioning of the laser-driven ion acceleration beamline at the Centre for Advanced Laser Applications. SPIE. p. 21. arXiv:2111.08461. doi:10.1117/12.2592407. ISBN 978-1-5106-4392-5. Retrieved 2025-11-01.
  13. ^ Siebold, Mathias; Roeser, Fabian; Loeser, Markus; Albach, Daniel; Schramm, Ulrich (2013-05-07). PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments. p. 878005. doi:10.1117/12.2017522. Retrieved 2025-11-02.
  14. ^ "1-PW LASER SYSTEM". CETAL. Retrieved 1 November 2025.
  15. ^ Lozhkarev, V V; Freidman, G I; Ginzburg, V N; Katin, E V; Khazanov, E A; Kirsanov, A V; Luchinin, G A; Mal'shakov, A N; Martyanov, M A; Palashov, O V; Poteomkin, A K; Sergeev, A M; Shaykin, A A; Yakovlev, I V (2007-06-01). "Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals". Laser Physics Letters. 4 (6): 421–427. doi:10.1002/lapl.200710008. ISSN 1612-2011. Retrieved 2025-11-01.
  16. ^ Roso, Luis (2011-05-21). Salamanca Pulsed Laser Center: the Spanish petawatt. p. 800113. doi:10.1117/12.894556. Retrieved 2025-11-01.
  17. ^ J. Hooker, Chris; L. Collier, John; Chekhlov, Oleg; J. Clarke, Robert; J. Divall, Edwin; Ertel, Klaus; Foster, Peta; Hancock, Steve; J. Hawkes, Steve; Holligan, Paul; J. Langley, Andrew; J. Lester, William; Neely, David; T. Parry, Bryn; E. Wyborn, Brian (2009). "The Astra Gemini Petawatt Ti:Sapphire Laser". The Review of Laser Engineering. 37 (6): 443–448. doi:10.2184/lsj.37.443. ISSN 0387-0200. Retrieved 2025-11-01.
  18. ^ Wojtusiak, Agnieszka; Phillips, Jonathan; Smith, Jodie; Mason, Paul; De Vido, Mariastefania; Butcher, Thomas; Hernandez Gomez, Cristina; Edwards, Chris; Collier, John (2023-06-09). Extreme photonics applications centre: high energy DPSSL pump for a 10 Hz PW-level laser (PDF). SPIE. p. 10. doi:10.1117/12.2665736. ISBN 978-1-5106-6274-2. Retrieved 2025-11-01.
  19. ^ Wang, Yong; Wang, Shoujun; Rockwood, Alex; Luther, Bradley M.; Hollinger, Reed; Curtis, Alden; Calvi, Chase; Menoni, Carmen S.; Rocca, Jorge J. (2017-10-01). "085 PW laser operation at 33 Hz and high-contrast ultrahigh-intensity λ = 400 nm second-harmonic beamline". Optics Letters. 42 (19): 3828. doi:10.1364/OL.42.003828. hdl:10217/206006. ISSN 0146-9592.
  20. ^ a b Leemans, WP; Daniels, J; Deshmukh, A; Gonsalves, AJ; Magana, A; Mao, HS; Mittelberger, DE; Nakamura, K; Riley, JR; Syversrud, D; Toth, C; Ybarrolaza, N. "BELLA laser and operations". Proceedings of PAC2013: 1097–1100.
  21. ^ Liu, Cheng; Banerjee, Sudeep; Zhang, Jun; Chen, Shouyuan; Brown, Kevin; Mills, Jared; Powers, Nathan; Zhao, Baozhen; Golovin, Gregory; Ghebregziabher, Isaac; Umstadter, Donald (2013-03-06). Repetitive petawatt-class laser with near-diffraction-limited focal spot and transform-limited pulse duration. p. 859919. doi:10.1117/12.2005008. Retrieved 2025-11-01.
  22. ^ Maksimchuk, A.; Nees, J.; Hou, B.; Anthony, R.; Bae, J.; Bayer, F.; Burger, M.; Campbell, P. T.; Cardarelli, J.; Contreras, V.; Ernst, N.; Falcoz, F.; Fitzgarrald, R.; Jovanovic, I.; Kalinchenko, G.; Kuranz, C.; Latham, J.; Ma, Y.; McKelvey, A.; Nutting, T.; Qian, Q.; Russell, B. K.; Sucha, G.; Thomas, A. G. R.; Van Camp, R.; Viges, E.; Willingale, L.; Young, G.; Zhang, Q.; Krushelnick, K. (2025-10-01). "The ZEUS multi-petawatt laser system". Physics of Plasmas. 32 (10). doi:10.1063/5.0283440. ISSN 1070-664X.
  23. ^ Bromage, Jake; Bahk, Seung-Whan; Barczys, Matthew; Bolognesi, Alex; Dorrer, Christophe; Ekanayake, Nagitha; Feng, Chengyong; Hill, Elizabeth; Jeon, Cheonha; Krieger, Michael; Kruschwitz, Brian; Kwiatkowski, Joseph; Power, Erik; Webb, Benjamin; Zuegel, Jonathan D. (2025-06-03). Laser system design and critical technologies for the NSF OPAL project. SPIE. p. 19. doi:10.1117/12.3055413. ISBN 978-1-5106-8860-5. Retrieved 2025-11-01.
  24. ^ Wang, Zhaohua; Liu, Cheng; Shen, Zhongwei; Zhang, Qing; Teng, Hao; Wei, Zhiyi (2011-08-15). "High-contrast 116 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier". Optics Letters. 36 (16): 3194–3196. Bibcode:2011OptL...36.3194W. doi:10.1364/OL.36.003194. ISSN 0146-9592. PMID 21847205. Retrieved 2025-08-27.
  25. ^ a b c d Li, Yutong; Chen, Liming; Chen, Min; Liu, Feng; Gu, Yuqiu; Guo, Bing; Hua, Jianfei; Huang, Taiwu; Leng, Yuxin; Li, Fei; Li, Lu; Li, Ruxin; Lin, Chen; Lu, Wei; Lyu, Zhihui; Ma, Wenjun; Ning, Xiaonan; Peng, Yujie; Wan, Yang; Wang, Jinguang; Wang, Zhaohua; Wei, Zhiyi; Yan, Xueqing; Zhang, Jie; Zhao, Baozhen; Zhao, Zengxiu; Zhou, Cangtao; Zhou, Kainan; Zhou, Weimin; Zhu, Jianqiang; Zhu, Ping (2025). "High-intensity lasers and research activities in China". High Power Laser Science and Engineering. 13. doi:10.1017/hpl.2024.69. ISSN 2095-4719.
  26. ^ Zeng, Xiaoming; et al. (2017). "Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification". Optics Letters. 42 (10): 2014–2017. Bibcode:2017OptL...42.2014Z. doi:10.1364/OL.42.002014. PMID 28504737.
  27. ^ Guo, Zhen; Yu, Lianghong; Wang, Jianye; Wang, Cheng; Liu, Yanqi; Gan, Zebiao; Li, Wenqi; Leng, Yuxin; Liang, Xiaoyan; Li, Ruxin (2018-10-01). "Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: sapphire chirped pulse amplification laser system". Optics Express. 26 (20) 26776. doi:10.1364/OE.26.026776. ISSN 1094-4087.
  28. ^ Zhu, Jianqiang; et al. (2018). "Analysis and construction status of SG-II 5PW laser facility". High Power Laser Science and Engineering. 6 e29. Bibcode:2018HPLSE...6E..29Z. doi:10.1017/hpl.2018.23.
  29. ^ Xu, Dirui; Shen, Baifei; Xu, Jiancai; Liang, Zhenfeng (2020). "XFEL beamline design for vacuum birefringence experiment". Nuclear Instruments and Methods in Physics Research Section A. 982 164553. Bibcode:2020NIMPA.98264553X. doi:10.1016/j.nima.2020.164553.
  30. ^ Yoon, Jin Woo; Kim, Yeong Gyu; Choi, Il Woo; Sung, Jae Hee; Lee, Hwang Woon; Lee, Seong Ku; Nam, Chang Hee (2021-05-20). "Realization of laser intensity over 10 23 W/cm 2". Optica. 8 (5): 630. doi:10.1364/OPTICA.420520. ISSN 2334-2536.
  31. ^ Pirozhkov, Alexander S.; Fukuda, Yuji; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Sagisaka, Akito; Ogura, Koichi; Mori, Michiaki; Kishimoto, Maki; Sakaki, Hironao; Dover, Nicholas P.; Kondo, Kotaro; Nakanii, Nobuhiko; Huang, Kai; Kanasaki, Masato; Kondo, Kiminori; Kando, Masaki (2017-08-21). "Approaching the diffraction-limited, bandwidth-limited Petawatt". Optics Express. 25 (17) 20486. doi:10.1364/OE.25.020486. ISSN 1094-4087.
  32. ^ "The Tata Institute of Fundamental Research (TIFR) has selected Amplitude to provide the first 1PW, 1Hz laser system in India". Amplitude. Retrieved 2025-07-03.
  33. ^ T. Green, Jonathan; Antipenkov, Roman; Bakule, Pavel; BartoníčEk, Jan; Eisenschreiber, Jan; Fibrich, Martin; Greco, Michael; Indra, Lukáš; Kramer, Daniel; A. Naylon, Jack; NováK, Jakub; šPačEk, Alexandr; Rus, Bedřich (2021). "L2-DUHA 100 TW High Repetition Rate Laser System at ELI-Beamlines: Key Design Considerations". The Review of Laser Engineering. 49 (2): 106. doi:10.2184/lsj.49.2_106. ISSN 0387-0200. Retrieved 2025-11-01.
  34. ^ "Facilities - LAPLACE". Retrieved 2 November 2025.
  35. ^ Palmer, Guido; Gonzalez-Diaz, Juan B.; Eichner, Timo; Braun, Cora; Hülsenbusch, Thomas; Werle, Christian M.; Winkelmann, Lutz; Vidoli, Caterina; Schnepp, Matthias; Kirchen, Manuel; Leemans, Wim P.; Maier, Andreas R. (2025-06-03). KALDERA: a high-average power drive-laser for laser plasma acceleration. SPIE. p. 1. doi:10.1117/12.3059070. ISBN 978-1-5106-9249-7. Retrieved 2025-11-02.
  36. ^ Reagan, Brendan A.; Albrecht, MariAnn; Alessi, David; Ammons, Mark; Banerjee, Saumyabrata; Barillas, Cris; Batysta, Frantisek; Buckley, Brandon; Chemali, Alex; Clark, Erin; Davila, Edwin; Deri, Robert J.; Eseltine, Kevin; Fishler, Barry; Fulkerson, Steve; Galbraith, Justin; Galvin, Thomas; Gonzales, Anthony; Gopalan, Vinod; Herriot, Sandrine; Hubka, Zbnek; Jimenez, Jessica; Kiani, Leily; Koh, Ed; Kupfer, Rotem; Liao, Zhi; Lusk, Jeremy; Nguyen, Hoang; Patel, Ashay; Peer, Aaron; Peterson, John; Plummer, Robert; Schaffers, Kathleen; Sistrunk, Emily; Spinka, Thomas M.; Stolz, Christopher; Tamer, Issa; Tang, Vincent; Telford, Steve; Terzi, Kenneth; Utley, Pamela; Velas, Katherine M.; Vella, Anthony; Wong, Nan (2023-03-14). High repetition rate, high energy petawatt laser for the matter in extreme conditions upgrade. SPIE. p. 17. doi:10.1117/12.2650137. ISBN 978-1-5106-5907-0. Retrieved 2025-11-02.
  37. ^ Tamer, Issa; Hubka, Zbynek; Kiani, Leily; Owens, Jason; Church, Andrew; Batysta, František; Galvin, Thomas; Willard, Drew; Yandow, Andrew; Galbraith, Justin; Alessi, David; Harthcock, Colin; Hickman, Brad; Jackson, Candis; Nissen, James; Tardiff, Sean; Nguyen, Hoang; Sistrunk, Emily; Spinka, Thomas; Reagan, Brendan A. (2024-03-15). "Demonstration of a 1 TW peak power, joule-level ultrashort Tm:YLF laser". Optics Letters. 49 (6): 1583. doi:10.1364/OL.519542. ISSN 0146-9592. Retrieved 2025-11-02.
[edit]