Quantum-mechanical framework for simulating molecules and solids
Generalized Kohn-Sham theory (GKS ) is an extension of Kohn–Sham (KS) density functional theory (DFT)[ 1] [ 2] and Hartree–Fock (HF) theory .[ 3] [ 4] [ 5] [ 6] [ 7] It is used to give a rigorous basis for Hybrid functionals . GKS theory was introduced by Seidl, Görling, Vogl, Majewski and Levy in 1996[ 8] and 1997[ 9] .
Instead of the regular Levy constrained search formulation of DFT
E
[
v
]
=
min
ρ
(
r
)
→
N
{
F
[
ρ
]
+
∫
d
r
v
(
r
)
ρ
(
r
)
}
{\displaystyle E[v]=\min _{\rho (r)\rightarrow N}{\bigg \{}F[\rho ]+\int drv(r)\rho (r){\bigg \}}}
where
F
[
ρ
]
=
min
Ψ
→
ρ
(
r
)
⟨
Ψ
|
T
^
+
V
^
e
e
|
Ψ
⟩
{\displaystyle F[\rho ]=\min _{\Psi \rightarrow \rho (r)}\langle \Psi |{\hat {T}}+{\hat {V}}_{ee}|\Psi \rangle }
is the Hohenberg-Kohn (HK) functional, one decomposes the electronic energy further into a HK-type functional
F
S
[
ρ
]
{\textstyle F^{S}[\rho ]}
of a given subsystem denoted
S
{\textstyle S}
and a remainder functional
R
S
[
ρ
]
{\textstyle R^{S}[\rho ]}
as
F
[
ρ
]
=
F
S
[
ρ
]
+
R
S
[
ρ
]
{\displaystyle F[\rho ]=F^{S}[\rho ]+R^{S}[\rho ]}
This leads to the GKS variational principle
E
[
v
]
=
min
ρ
(
r
)
→
N
{
F
S
[
ρ
]
+
R
S
[
ρ
]
+
∫
d
r
v
(
r
)
ρ
(
r
)
}
=
min
ρ
(
r
)
→
N
{
min
Φ
→
ρ
(
r
)
S
[
Φ
]
+
R
S
[
ρ
]
+
∫
d
r
v
(
r
)
ρ
(
r
)
}
=
=
min
Φ
→
N
{
S
[
Φ
]
+
R
S
[
ρ
[
Φ
]
]
+
∫
d
r
v
(
r
)
ρ
[
Φ
]
(
r
)
}
=
min
{
ϕ
i
}
→
N
{
S
[
{
ϕ
i
}
]
+
R
S
[
ρ
[
{
ϕ
i
}
]
]
+
∫
d
r
v
(
r
)
ρ
[
{
ϕ
i
}
]
(
r
)
}
{\displaystyle {\begin{aligned}E[v]=\min _{\rho (r)\rightarrow N}{\bigg \{}F^{S}[\rho ]+R^{S}[\rho ]+\int drv(r)\rho (r){\bigg \}}=\min _{\rho (r)\rightarrow N}{\bigg \{}\min _{\Phi \rightarrow \rho (r)}S[\Phi ]+R^{S}[\rho ]+\int drv(r)\rho (r){\bigg \}}=\\=\min _{\Phi \rightarrow N}{\bigg \{}S[\Phi ]+R^{S}[\rho [\Phi ]]+\int drv(r)\rho [\Phi ](r){\bigg \}}=\min _{\{\phi _{i}\}\rightarrow N}{\bigg \{}S[\{\phi _{i}\}]+R^{S}[\rho [\{\phi _{i}\}]]+\int drv(r)\rho [\{\phi _{i}\}](r){\bigg \}}\end{aligned}}}
where the HK-type functional of the subsystem is defined as
F
S
[
ρ
]
≡
min
Φ
→
ρ
(
r
)
S
[
Φ
]
=
min
{
ϕ
i
}
→
N
S
[
{
ϕ
i
}
]
{\displaystyle F^{S}[\rho ]\equiv \min _{\Phi \rightarrow \rho (r)}S[\Phi ]=\min _{\{\phi _{i}\}\rightarrow N}S[\{\phi _{i}\}]}
and the energy of the subsystem is given as
E
S
[
v
eff
;
{
ϕ
i
}
]
=
min
ρ
(
r
)
→
N
{
F
S
[
ρ
]
+
∫
d
r
v
eff
(
r
)
ρ
(
r
)
}
=
S
[
{
ϕ
i
}
]
+
∫
d
r
v
eff
(
r
)
ρ
(
r
)
{\displaystyle E^{S}[v_{\text{eff}};\{\phi _{i}\}]=\min _{\rho (r)\rightarrow N}{\bigg \{}F^{S}[\rho ]+\int drv_{\text{eff}}(r)\rho (r){\bigg \}}=S[\{\phi _{i}\}]+\int drv_{\text{eff}}(r)\rho (r)}
Here the effective potential is the sum of the external potential and remainder potential
v
eff
(
r
)
=
v
(
r
)
+
δ
R
S
[
ρ
]
δ
ρ
(
r
)
⏟
v
R
(
r
)
{\displaystyle v_{\text{eff}}(r)=v(r)+\underbrace {\frac {\delta R^{S}[\rho ]}{\delta \rho (r)}} _{v_{R}(r)}}
Minimizing the energy of the subsystem under constrained, that the set of orbitals is orthonormalized, one obtains the GKS equations
O
^
S
[
{
ϕ
i
}
]
ϕ
j
+
v
eff
ϕ
j
=
O
^
S
[
{
ϕ
i
}
]
ϕ
j
+
v
ϕ
j
+
v
R
ϕ
j
=
ε
ϕ
j
{\displaystyle {\hat {O}}^{S}[\{\phi _{i}\}]\phi _{j}+v_{\text{eff}}\phi _{j}={\hat {O}}^{S}[\{\phi _{i}\}]\phi _{j}+v\phi _{j}+v_{R}\phi _{j}=\varepsilon \phi _{j}}
The operator
O
^
S
[
{
ϕ
i
}
]
{\textstyle {\hat {O}}^{S}[\{\phi _{i}\}]}
is invariant under unitary orbital transformations. The choice of the Slater determinant functional
S
[
Φ
]
=
S
[
{
ϕ
i
}
]
{\textstyle S[\Phi ]=S[\{\phi _{i}\}]}
distinguished the different GKS shemes.
Choosing the Slater determinant functional as the kinetic energy of a Slater determinant
S
[
Φ
]
≡
T
[
Φ
]
⇒
{
R
s
[
ρ
]
=
E
Hxc
[
ρ
]
v
R
=
v
Hxc
⇒
v
eff
=
v
+
v
Hxc
=
v
S
,
O
S
=
−
1
2
Δ
⇒
O
S
+
v
eff
=
−
1
2
Δ
+
v
S
=
h
KS
{\displaystyle {\begin{aligned}S[\Phi ]\equiv T[\Phi ]\Rightarrow {\begin{cases}R^{s}[\rho ]=E_{\text{Hxc}}[\rho ]\\v_{R}=v_{\text{Hxc}}\end{cases}}\Rightarrow v_{\text{eff}}=v+v_{\text{Hxc}}=v_{S},\\O^{S}=-{\frac {1}{2}}\Delta \Rightarrow O^{S}+v_{\text{eff}}=-{\frac {1}{2}}\Delta +v_{S}=h_{\text{KS}}\end{aligned}}}
one obtains the Kohn–Sham (KS) equations .
Hartree-Fock-Kohn-Sham (HF-KS)[ edit ]
Choosing the Slater determinant functional as the kinetic energy and electron-electron interaction of a Slater determinant
S
[
Φ
]
≡
T
[
Φ
]
+
E
Hx
[
Φ
]
⇒
{
R
s
[
ρ
]
=
E
c
HF
[
ρ
]
v
R
=
v
c
HF
⇒
v
eff
=
v
+
v
c
HF
,
O
S
=
−
1
2
Δ
+
v
H
+
v
x
NL
⇒
O
s
+
v
eff
=
−
1
2
Δ
+
v
+
v
H
+
v
x
NL
+
v
c
HF
=
h
HF-KS
{\displaystyle {\begin{aligned}S[\Phi ]\equiv T[\Phi ]+E_{\text{Hx}}[\Phi ]\Rightarrow {\begin{cases}R^{s}[\rho ]=E_{\text{c}}^{\text{HF}}[\rho ]\\v_{R}=v_{\text{c}}^{\text{HF}}\end{cases}}\Rightarrow v_{\text{eff}}=v+v_{\text{c}}^{\text{HF}},\\O^{S}=-{\frac {1}{2}}\Delta +v_{\text{H}}+v_{\text{x}}^{\text{NL}}\Rightarrow O^{s}+v_{\text{eff}}=-{\frac {1}{2}}\Delta +v+v_{\text{H}}+v_{\text{x}}^{\text{NL}}+v_{\text{c}}^{\text{HF}}=h_{\text{HF-KS}}\end{aligned}}}
one obtains the Hartree-Fock-Kohn-Sham (HF-KS) equations.
Choosing the Slater determinant functional as the kinetic energy and electron-electron interaction of a Slater determinant scaled along the adiabatic connection (AC)
S
[
Φ
]
≡
T
[
Φ
]
+
α
E
Hx
[
Φ
]
⇒
{
R
s
[
ρ
]
=
α
E
c
HF
+
(
1
−
α
)
E
Hxc
[
ρ
]
v
R
=
α
v
c
HF
+
(
1
−
α
)
v
Hxc
⇒
v
eff
=
v
+
α
v
c
HF
+
(
1
−
α
)
v
Hxc
,
O
S
=
−
1
2
Δ
+
α
v
H
+
α
v
x
NL
⇒
O
S
+
v
eff
=
−
1
2
Δ
+
v
+
α
v
H
+
(
1
−
α
)
v
H
⏟
v
H
+
α
v
x
NL
+
α
v
c
HF
+
(
1
−
α
)
v
x
+
(
1
−
α
)
v
c
∈
[
h
KS
,
h
HF-KS
]
{\displaystyle {\begin{aligned}S[\Phi ]\equiv T[\Phi ]+\alpha E_{\text{Hx}}[\Phi ]\Rightarrow {\begin{cases}R^{s}[\rho ]=\alpha E_{\text{c}}^{\text{HF}}+(1-\alpha )E_{\text{Hxc}}[\rho ]\\v_{R}=\alpha v_{\text{c}}^{\text{HF}}+(1-\alpha )v_{\text{Hxc}}\end{cases}}\\\Rightarrow v_{\text{eff}}=v+\alpha v_{\text{c}}^{\text{HF}}+(1-\alpha )v_{\text{Hxc}},O^{S}=-{\frac {1}{2}}\Delta +\alpha v_{\text{H}}+\alpha v_{\text{x}}^{\text{NL}}\\\Rightarrow O^{S}+v_{\text{eff}}=\\-{\frac {1}{2}}\Delta +v+\underbrace {\alpha v_{\text{H}}+(1-\alpha )v_{\text{H}}} _{v_{\text{H}}}+\alpha v_{\text{x}}^{\text{NL}}+\alpha v_{\text{c}}^{\text{HF}}+(1-\alpha )v_{\text{x}}+(1-\alpha )v_{\text{c}}\in [h_{\text{KS}},h_{\text{HF-KS}}]\end{aligned}}}
one obtains the global (double) hybrid equations.
^ Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas" . Physical Review . 136 (3B): B864. Bibcode :1964PhRv..136..864H . doi :10.1103/PhysRev.136.B864 .
^ Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects" . Physical Review . 140 (4A) A1133. Bibcode :1965PhRv..140.1133K . doi :10.1103/PhysRev.140.A1133 .
^ Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field". Mathematical Proceedings of the Cambridge Philosophical Society . 24 (1): 111. Bibcode :1928PCPS...24..111H . doi :10.1017/S0305004100011920 . S2CID 121520012 .
^ Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Physical Review . 32 (3): 339– 348. Bibcode :1928PhRv...32..339S . doi :10.1103/PhysRev.32.339 .
^ Gaunt, J. A. (1928). "A Theory of Hartree's Atomic Fields". Mathematical Proceedings of the Cambridge Philosophical Society . 24 (2): 328– 342. Bibcode :1928PCPS...24..328G . doi :10.1017/S0305004100015851 . S2CID 119685329 .
^ Slater, J. C. (1930). "Note on Hartree's Method". Physical Review . 35 (2): 210– 211. Bibcode :1930PhRv...35..210S . doi :10.1103/PhysRev.35.210.2 .
^ Fock, V. A. (1930). "Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems". Zeitschrift für Physik (in German). 61 (1): 126– 148. Bibcode :1930ZPhy...61..126F . doi :10.1007/BF01340294 . S2CID 125419115 . Fock, V. A. (1930). " "Selfconsistent field" mit Austausch für Natrium". Zeitschrift für Physik (in German). 62 (11): 795– 805. Bibcode :1930ZPhy...62..795F . doi :10.1007/BF01330439 . S2CID 120921212 .
^ a b Seidl, Andreas; Görling, Andreas; Vogl, Peter; Majewski, Jacek A.; Levy, Mel (1996). "Generalized Kohn-Sham schemes and the band-gap problem". Physical Review B . 53 (7): 3764– 3774. doi :10.1103/PhysRevB.53.3764 .
^ a b Görling, Andreas; Levy, Mel (1997). "Hybrid schemes combining the Hartree–Fock method and density-functional theory: Underlying formalism and properties of correlation functionals". The Journal of Chemical Physics . 106 (7): 2675– 2680. doi :10.1063/1.473369 .
^ Gould, Tim; Kronik, Leeor (2020). "Exact Generalized Kohn-Sham Theory for Hybrid Functionals". Physical Review X . 10 : 021040. doi :10.1103/PhysRevX.10.021040 . {{cite journal }}: CS1 maint: article number as page number (link )