Generalized Kohn Sham theory

Generalized Kohn-Sham theory (GKS) is an extension of Kohn–Sham (KS) density functional theory (DFT)[1][2] and Hartree–Fock (HF) theory.[3][4][5][6][7] It is used to give a rigorous basis for Hybrid functionals. GKS theory was introduced by Seidl, Görling, Vogl, Majewski and Levy in 1996[8] and 1997[9].

Formalism of GKS theory [8][10]

[edit]

Instead of the regular Levy constrained search formulation of DFT

where

is the Hohenberg-Kohn (HK) functional, one decomposes the electronic energy further into a HK-type functional of a given subsystem denoted and a remainder functional as

This leads to the GKS variational principle

where the HK-type functional of the subsystem is defined as

and the energy of the subsystem is given as

Here the effective potential is the sum of the external potential and remainder potential

Minimizing the energy of the subsystem under constrained, that the set of orbitals is orthonormalized, one obtains the GKS equations

The operator is invariant under unitary orbital transformations. The choice of the Slater determinant functional distinguished the different GKS shemes.

Kohn-Sham (KS)

[edit]

Choosing the Slater determinant functional as the kinetic energy of a Slater determinant

one obtains the Kohn–Sham (KS) equations.

Hartree-Fock-Kohn-Sham (HF-KS)

[edit]

Choosing the Slater determinant functional as the kinetic energy and electron-electron interaction of a Slater determinant

one obtains the Hartree-Fock-Kohn-Sham (HF-KS) equations.

Hybrid formalism: GKS along the adiabatic connection (AC)[9]

[edit]

Choosing the Slater determinant functional as the kinetic energy and electron-electron interaction of a Slater determinant scaled along the adiabatic connection (AC)

one obtains the global (double) hybrid equations.

  1. ^ Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
  2. ^ Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A) A1133. Bibcode:1965PhRv..140.1133K. doi:10.1103/PhysRev.140.A1133.
  3. ^ Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field". Mathematical Proceedings of the Cambridge Philosophical Society. 24 (1): 111. Bibcode:1928PCPS...24..111H. doi:10.1017/S0305004100011920. S2CID 121520012.
  4. ^ Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Physical Review. 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339.
  5. ^ Gaunt, J. A. (1928). "A Theory of Hartree's Atomic Fields". Mathematical Proceedings of the Cambridge Philosophical Society. 24 (2): 328–342. Bibcode:1928PCPS...24..328G. doi:10.1017/S0305004100015851. S2CID 119685329.
  6. ^ Slater, J. C. (1930). "Note on Hartree's Method". Physical Review. 35 (2): 210–211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2.
  7. ^ Fock, V. A. (1930). "Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems". Zeitschrift für Physik (in German). 61 (1): 126–148. Bibcode:1930ZPhy...61..126F. doi:10.1007/BF01340294. S2CID 125419115. Fock, V. A. (1930). ""Selfconsistent field" mit Austausch für Natrium". Zeitschrift für Physik (in German). 62 (11): 795–805. Bibcode:1930ZPhy...62..795F. doi:10.1007/BF01330439. S2CID 120921212.
  8. ^ a b Seidl, Andreas; Görling, Andreas; Vogl, Peter; Majewski, Jacek A.; Levy, Mel (1996). "Generalized Kohn-Sham schemes and the band-gap problem". Physical Review B. 53 (7): 3764–3774. doi:10.1103/PhysRevB.53.3764.
  9. ^ a b Görling, Andreas; Levy, Mel (1997). "Hybrid schemes combining the Hartree–Fock method and density-functional theory: Underlying formalism and properties of correlation functionals". The Journal of Chemical Physics. 106 (7): 2675–2680. doi:10.1063/1.473369.
  10. ^ Gould, Tim; Kronik, Leeor (2020). "Exact Generalized Kohn-Sham Theory for Hybrid Functionals". Physical Review X. 10: 021040. doi:10.1103/PhysRevX.10.021040.{{cite journal}}: CS1 maint: article number as page number (link)