Enrique Monte
Born
OccupationsPlant microbiologist and academic
Academic background
EducationM.Sc., Pharmacy
Ph.D., Microbiology
Alma materUniversity of Seville
University of Salamanca
Academic work
InstitutionsUniversity of Salamanca

Enrique Monte is a Spanish plant microbiologist and academic. He is a professor of microbiology at the University of Salamanca.

Monte's research concerns functional genomics, Trichoderma-plant interactions, and heritable plant defense mechanisms. He was awarded the Severo Ochoa Prize by the Prince of Asturias Foundation in 1999.

Education

[edit]

Monte graduated with a degree in Pharmacy from the University of Seville in 1982. In 1986, he completed a Ph.D. in Microbiology from the University of Salamanca.[1][2]

Career

[edit]

Monte started his academic career at the University of Salamanca, where he was appointed an assistant professor in 1983[3] and associate professor in 1991.[4] Since 2007,[5] he has been a university professor at the Institute for Agrobiotechnology Research at the University of Salamanca.[6] During this time, he also directed a postgraduate course at the University of Buenos Aires.[7] In 1998, he founded the biotechnology company NBT.[8]

Research

[edit]

Monte's research on Trichoderma focused on developing and applying isoenzyme analysis and gene sequencing techniques to distinguish morphologically similar strains within the T. harzianum species complex that possess biocontrol potential against pathogenic fungi.[9] He further investigated the enzymatic activities of different Trichoderma strains involved in biocontrol mechanisms against nematodes[10] and insects.[11]

Monte also demonstrated that Trichoderma stimulates the expression of plant genes associated with salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) production,[12] though at higher inoculum levels, it can alter this balance by suppressing SA-dependent defenses and enhancing JA, ET, and auxin pathways.[13] His work also indicated that Trichoderma can promote plant development[14] by influencing the phytohormonal balance to enhance growth and immunity.[15] Monte proposed that the growth enhancement and disease resistance conferred by Trichoderma can be inherited by plants through sustained interactions with the fungus.[16]

Together with colleagues, he found that Trichoderma induces defense responses in tomato plants under biotic and abiotic stress by upregulating SA- and JA/ET-dependent defense pathways.[17] His research also emphasized that SA functions as a key phytohormone barrier, preventing Trichoderma from colonizing the plant's vascular bundles.[18]

In a collaborative study, Monte reported that T. harzianum enhances the association between arbuscular mycorrhizal fungi and non-host Brassicaceae roots, improving plant productivity.[19] Similarly, Trichoderma strains were shown to effectively control Verticillium decay in olive plants.[20]

Monte also identified that endopolygalacturonase (ThPG1) produced by T. harzianum releases damage-associated molecular pattern (DAMP) signals,[21] which can act as initiators to strengthen Trichoderma-induced systemic resistance in plants.[22] Furthermore, his studies observed that Trichoderma produces phytohormones such as ABA, CKs, GAs, SA, ET, and auxin in a strain-specific manner, and that their combined action enhances both plant growth and defense responses.[23]

Awards and honors

[edit]
  • 1999 – Severo Ochoa Prize, Prince of Asturias Foundation[24]
  • 2024 – World’s Top 2% Scientists, Stanford University[25]

Selected articles

[edit]
  • Hermosa, M. R.; Grondona, I.; Iturriaga, E. A.; Diaz-Minguez, J. M.; Castro, C.; Monte, E.; Garcia-Acha, I. (May 2000). "Molecular Characterization and Identification of Biocontrol Isolates of Trichoderma spp". Applied and Environmental Microbiology. 66 (5): 1890–1898. Bibcode:2000ApEnM..66.1890H. doi:10.1128/AEM.66.5.1890-1898.2000. PMC 101429. PMID 10788356.
  • Lorito, Matteo; Woo, Sheridan L.; Monte, Enrique (September 2010). "Translational Research on Trichoderma: From 'Omics to the Field". Annual Review of Phytopathology. 48 (1): 395–417. Bibcode:2010AnRvP..48..395L. doi:10.1146/annurev-phyto-073009-114314. PMID 20455700.
  • Kubicek, Christian P.; Herrera-Estrella, Alfredo; Seidl-Seiboth, Verena; Martinez, Diego A.; Druzhinina, Irina S.; Thon, Michael; Zeilinger, Susanne; Casas-Flores, Sergio; Horwitz, Benjamin A.; Mukherjee, Prasun K.; Mukherjee, Mala; et al. (April 2011). "Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma". Genome Biology. 12 (4): R40. doi:10.1186/gb-2011-12-4-r40. PMC 3218866. PMID 21501500.
  • Druzhinina, Irina S.; Seidl-Seiboth, Verena; Herrera-Estrella, Alfredo; Horwitz, Benjamin A.; Kenerley, Charles M.; Monte, Enrique; Mukherjee, Prasun K.; Zeilinger, Susanne; Grigoriev, Igor V.; Kubicek, Christian P. (October 2011). "Trichoderma: the genomics of opportunistic success". Nature Reviews Microbiology. 9 (10): 749–759. doi:10.1038/nrmicro2637. PMID 21921934.
  • Hermosa, Rosa; Viterbo, Ada; Chet, Ilan; Monte, Enrique (January 2012). "Plant-beneficial effects of Trichoderma and of its genes". Microbiology. 158 (1): 17–25. doi:10.1099/mic.0.052274-0. PMID 21998166.
  • Medeiros, H.A.; Araújo Filho, J.V.; Freitas, L.G.; Castillo, P.; Rubio, M.B.; Hermosa, R.; Monte, E. (January 2017). "Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride". Scientific Reports. 7 40216. Bibcode:2017NatSR...740216M. doi:10.1038/srep40216. PMC 5223212. PMID 28071749.
  • Woo, Sheridan L.; Hermosa, Rosa; Lorito, Matteo; Monte, Enrique (May 2023). "Trichoderma: a multipurpose plant-beneficial microorganism for eco-sustainable agriculture". Nature Reviews Microbiology. 21 (5): 312–326. doi:10.1038/s41579-022-00819-5. PMID 36414835.

References

[edit]
  1. ^ "Enrique Monte Vázquez". epg.agro.uba.ar. Retrieved August 25, 2025.
  2. ^ "Enrique Monte Vázquez". produccioncientifica.usal.es. Retrieved August 25, 2025.
  3. ^ "Memoria del año académico 1983-1984". gredos.usal.es. 1986. Retrieved September 29, 2025.
  4. ^ "BOE num 273" (PDF). boe.es. Retrieved September 29, 2025.
  5. ^ "Boletín Oficial del Estado" (PDF). boe.es. Retrieved September 20, 2025.
  6. ^ "Grupo de Fitopatología y Control Biológico". CIALE. Retrieved August 21, 2025.
  7. ^ "Biological control: general principles and application of biofungicides in agriculture". epg.agro.uba.ar. Retrieved September 29, 2025.
  8. ^ Méndez, Juan (12 April 2009). "Tecnología en organismos vivos". El País. Retrieved August 8, 2025.
  9. ^ Kredics, László; Chen, Liqiong; Kedves, Orsolya; Büchner, Rita; Hatvani, Lóránt; Allaga, Henrietta; Nagy, Viktor D.; Khaled, Jamal M.; Alharbi, Naiyf S.; Vágvölgyi, Csaba (2018). "Molecular Tools for Monitoring Trichoderma in Agricultural Environments". Frontiers in Microbiology. 9 1599. doi:10.3389/fmicb.2018.01599. ISSN 1664-302X. PMC 6068273. PMID 30090089.
  10. ^ Szabó, Márton; Urbán, Péter; Virányi, Ferenc; Kredics, László; Fekete, Csaba (2013). "Comparative gene expression profiles of Trichoderma harzianum proteases during in vitro nematode egg-parasitism". Biological Control. 67 (3): 337–343. Bibcode:2013BiolC..67..337S. doi:10.1016/j.biocontrol.2013.09.002.
  11. ^ Varela-Pardo, R. A.; Curaqueo, G.; Fuentes-Quiroz, A.; Díaz-Navarrete, P.; López-Lastra, C.; Mónaco, C.; Wright, E. (2025). "Evaluation of the Pathogenicity of Metarhizium taii and Trichoderma afroharzianum on Immature Stages of Bemisia tabaci in Tomato Plants". Crops. 5 (5): 66. doi:10.3390/crops5050066.
  12. ^ Harel, Yael Meller; Mehari, Zeraye Haile; Rav-David, Dalia; Elad, Yigal (2014). "Systemic Resistance to Gray Mold Induced in Tomato by Benzothiadiazole and Trichoderma harzianum T39". Phytopathology. 104 (2): 150–157. Bibcode:2014PhPat.104..150H. doi:10.1094/PHYTO-02-13-0043-R. PMID 24047252.
  13. ^ Dutta, Pranab; Mahanta, Madhusmita; Singh, Soibam Basanta; Thakuria, Dwipendra; Deb, Lipa; Kumari, Arti; Upamanya, Gunadhya K.; Boruah, Sarodee; Dey, Utpal; Mishra, A. K.; Vanlaltani, Lydia; VijayReddy, Dumpapenchala; Heisnam, Punabati; Pandey, Abhay K. (2023). "Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens". Frontiers in Plant Science. 14 1145715. Bibcode:2023FrPS...1445715D. doi:10.3389/fpls.2023.1145715. ISSN 1664-462X. PMC 10225716. PMID 37255560.
  14. ^ Maurya, Shivam; Ntakirutimana, Richard; Rana, Barnik Debnath Meenakshi; Srivastava, Dipshikha Kaushik AND Seweta (2024). "Trichoderma and Their Secondary Metabolites ? A Potential Approach in Plant Disease Management". Biopesticides International. 20: 21. doi:10.59467/BI.2024.20.21.
  15. ^ Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A.; Van Wees, Saskia C.M. (2014). "Phytohormone Profiles Induced by Trichoderma Isolates Correspond with Their Biocontrol and Plant Growth-Promoting Activity on Melon Plants". Journal of Chemical Ecology. 40 (7): 804–815. Bibcode:2014JCEco..40..804M. doi:10.1007/s10886-014-0478-1. hdl:1874/307498. PMID 25023078.
  16. ^ Contreras-Cornejo, Hexon Angel; Schmoll, Monika; Esquivel-Ayala, Blanca Alicia; González-Esquivel, Carlos E.; Rocha-Ramírez, Victor; Larsen, John (2024). "Mechanisms for plant growth promotion activated by Trichoderma in natural and managed terrestrial ecosystems". Microbiological Research. 281 127621. doi:10.1016/j.micres.2024.127621. PMID 38295679.
  17. ^ Chen, X.; Lu, Y.; Liu, X.; Gu, Y.; Li, F. (2025). "Trichoderma: Dual Roles in Biocontrol and Plant Growth Promotion". Microorganisms. 13 (8): 1840. doi:10.3390/microorganisms13081840. PMC 12388180. PMID 40871343.
  18. ^ Pacheco-Trejo, J.; Aquino-Torres, E.; Reyes-Santamaría, M. I.; Islas-Pelcastre, M.; Pérez-Rios, S. R.; Madariaga-Navarrete, A.; Saucedo-García, M. (2022). "Plant defensive responses triggered by Trichoderma spp. as tools to face stressful conditions". Horticulturae. 8 (12): 1181. doi:10.3390/horticulturae8121181.
  19. ^ Mukherjee, Prasun K.; Mendoza-Mendoza, Artemio; Zeilinger, Susanne; Horwitz, Benjamin A. (2022). "Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases". Fungal Biology Reviews. 39: 15–33. Bibcode:2022FunBR..39...15M. doi:10.1016/j.fbr.2021.11.004.
  20. ^ Kowalska, Beata (2021). "Management of the soil-borne fungal pathogen – Verticillium dahliae Kleb. causing vascular wilt diseases". Journal of Plant Pathology. 103 (4): 1185–1194. Bibcode:2021JPlaP.103.1185K. doi:10.1007/s42161-021-00937-8.
  21. ^ Yang, Yingfen; Zhao, Meiwei; Li, Guotao; Wang, Ying; Shen, Qingqing; Yang, Jun; Asseri, Tahani A. Y.; Wang, Yanjun; Guo, Min; Ahmed, Waqar (2025). "Molecular Tactics of Biocontrol Fungi to Hack Plant Immunity for Successful Host Colonization—A Focus on Trichoderma Fungi". Microorganisms. 13 (6): 1251. doi:10.3390/microorganisms13061251. ISSN 2076-2607. PMC 12195513. PMID 40572138.
  22. ^ Lang, Bo; Chen, Jie (2023). "Trichoderma harzianum Cellulase Gene thph2 Affects Trichoderma Root Colonization and Induces Resistance to Southern Leaf Blight in Maize". Journal of Fungi. 9 (12): 1168. doi:10.3390/jof9121168. ISSN 2309-608X. PMC 10744625. PMID 38132769.
  23. ^ Saadaoui, M.; Faize, M.; Bonhomme, L.; Benyoussef, N. O.; Kharrat, M.; Chaar, H.; Label, P.; Venisse, J. S. (2023). "Assessment of Tunisian Trichoderma isolates on wheat seed germination, seedling growth and fusarium seedling blight suppression". Microorganisms. 11 (6): 1512. doi:10.3390/microorganisms11061512. PMC 10303082. PMID 37375014.
  24. ^ "La Universidad de Salamanca y la empresa norteamericana iQBiotech impulsan la investigación en biotecnología aplicada a la agricultura | Sala de Prensa". Saladeprensa.usal.es. Retrieved August 21, 2025.
  25. ^ "Monte, Enrique". topscinet.com. Retrieved August 26, 2025.