This is an extended version of the energy density table from the main Energy density page.

Energy densities table
Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency %
Arbitrary antimatter 89,875,517,874 depends on density
Deuterium–tritium fusion 576,000,000[1]
Uranium-235 fissile isotope 144,000,000[1] 1,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor 86,000,000
Reactor-grade uranium (3.5% U-235) in light-water reactor 3,456,000 35%
Pu-238 α-decay 2,200,000
Hf-178m2 isomer 1,326,000 17,649,060
Natural uranium (0.7% U235) in light-water reactor 443,000 35%
Ta-180m isomer 41,340 689,964
Metallic hydrogen (recombination energy) 216[2]
Specific orbital energy of low Earth orbit (approximate) 33.0
Beryllium + oxygen 23.9[3]
Lithium + fluorine 23.75[citation needed]
Octaazacubane potential explosive 22.9[4]
Hydrogen + oxygen 13.4[5]
Gasoline + oxygen 13.3[citation needed]
Dinitroacetylene explosive – computed[citation needed] 9.8
Octanitrocubane explosive 8.5[6] 16.9[citation needed]
Tetranitrotetrahedrane explosive – computed[citation needed] 8.3
Heptanitrocubane explosive – computed[citation needed] 8.2
Sodium (reacted with chlorine)[citation needed] 7.0349
Hexanitrobenzene explosive 7[7]
Tetranitrocubane explosive – computed[citation needed] 6.95
Ammonal (Al+NH4NO3 oxidizer)[citation needed] 6.9 12.7
Tetranitromethane + hydrazine bipropellant – computed[citation needed] 6.6
Nitroglycerin 6.38[8] 10.2[9]
ANFOANNM[citation needed] 6.26
Lithium–air battery 6.12
Octogen (HMX) 5.7[8] 10.8[10]
TNT[11] 4.610 6.92
Copper Thermite (Al + CuO as oxidizer)[citation needed] 4.13 20.9
Thermite (powder Al + Fe2O3 as oxidizer) 4.00 18.4
ANFO[citation needed] 3.7
Hydrogen peroxide decomposition (as monopropellant) 2.7 3.8
Li-ion nanowire battery 2.54 29 95%[clarification needed][12]
Lithium thionyl chloride battery[13] 2.5
Water (220.64 bar, 373.8 °C)[citation needed][clarification needed] 1.968 0.708
Kinetic energy penetrator[clarification needed] 1.9 30
Lithium–sulfur battery[14] 1.80[15] 1.26
Fluoride-ion battery [citation needed] 1.7 2.8
Hydrogen closed cycle fuel cell[16] 1.62
Hydrazine decomposition (as monopropellant) 1.6 1.6
Ammonium nitrate decomposition (as monopropellant) 1.4 2.5
Molten salt 1[citation needed] 98%[17]
Molecular spring (approximate)[citation needed] 1
Lithium metal battery[18][19] 0.83-1.01 1.98-2.09
Sodium–sulfur battery 0.72[20][better source needed] 1.23[citation needed] 85%[21]
Lithium-ion battery[22][23] 0.46–0.72 0.83–3.6[24] 95%[25]
Sodium–nickel chloride battery, high temperature[vague] 0.56
Zinc–manganese (alkaline) battery, long life design[18][22] 0.4-0.59 1.15-1.43
Silver-oxide battery[18] 0.47 1.8
Flywheel 0.36–0.5[26][27]
5.56 × 45 mm NATO bullet muzzle energy density[clarification needed] 0.4 3.2
Nickel–metal hydride battery (NiMH), low power design as used in consumer batteries[28] 0.4 1.55
Liquid nitrogen 0.349
Waterenthalpy of fusion 0.334 0.334
Zinc–bromine flow battery (ZnBr)[29] 0.27
Nickel–metal hydride battery (NiMH), high-power design as used in cars[30] 0.250 0.493
Nickel–cadmium battery (NiCd)[22] 0.14 1.08 80%[25]
[22] || 0.13 || 0.331 || ||
Lead–acid battery[22] 0.14 0.36
Vanadium redox battery 0.09[citation needed] 0.1188 7070-75%
Vanadium bromide redox battery 0.18 0.252 80%–90%[31]
Ultracapacitor 0.0199[32] 0.050[citation needed]
Supercapacitor 0.01[citation needed] 80%–98.5%[33] 39%–70%[33]
Superconducting magnetic energy storage 0.008[34][bare URL] >95%
Capacitor 0.002[35]
Neodymium magnet 0.003[36]
Ferrite magnet 0.0003[36]
Spring power (clock spring), torsion spring 0.0003[citation needed] 0.0006
Storage type Energy density by mass (MJ/kg) Energy density by volume (MJ/L) Peak recovery efficiency % Practical recovery efficiency %

Notes

[edit]
  1. ^ a b Prelas, Mark (2015). Nuclear-Pumped Lasers. Springer. p. 135. ISBN 978-3-319-19845-3.
  2. ^ Silvera, Isaac F.; Cole, John W. (2010-03-01). "Metallic hydrogen: The most powerful rocket fuel yet to exist". Journal of Physics: Conference Series. 215 (1) 012194. Bibcode:2010JPhCS.215a2194S. doi:10.1088/1742-6596/215/1/012194. ISSN 1742-6596.
  3. ^ Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide". Journal of the American Chemical Society. 75 (13): 3102–3103. doi:10.1021/ja01109a018.
  4. ^ Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?". Inorganic Chemistry. 35 (24): 7124–7133. doi:10.1021/ic9606237. PMID 11666896.
  5. ^ Miller, Catherine (1 February 2021). "Introduction to Rocket Propulsion" (PDF). Archived from the original (PDF) on 9 May 2021. Retrieved 9 May 2021.
  6. ^ Ju, Xue-Hai; Wang, Zun-Yao (April 2009). "Theoretical Study on Thermodynamic and Detonation Properties of Polynitrocubanes". Propellants, Explosives, Pyrotechnics. 34 (2). Wiley: 106–109. doi:10.1002/prep.200800007. Archived from the original on 2013-01-05.
  7. ^ Matsunaga, Takehiro; Nakayama, Yoshio; Iida, Mitsuaki; Oinuma, Senzo; Ishikawa, Noboru; Tanaka, Katsumi (May 1992). "Am1 MO Study of Benzene Nitro Derivatives". Propellants, Explosives, Pyrotechnics. 17 (2): 63–69. doi:10.1002/prep.19920170204. Archived from the original on 2013-01-05.
  8. ^ a b "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07.
  9. ^ Nitroglycerin
  10. ^ HMX
  11. ^ Kinney, G. F.; Graham, K. J. (1985). Explosive shocks in air. Springer. ISBN 978-3-540-15147-0.
  12. ^ "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". Stanford Report. 2007-12-18. Archived from the original on 2010-01-07. Retrieved 2010-05-07.
  13. ^ "Lithium Thionyl Chloride Batteries". Nexergy. Archived from the original on 2009-02-04. Retrieved 2010-05-07.
  14. ^ "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power. 2005-09-28. Archived from the original (PDF) on 2008-08-28.
  15. ^ Kolosnitsyn, V. S.; Karaseva, E. V. (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry. 44 (5): 506–509. doi:10.1134/s1023193508050029. S2CID 97022927.
  16. ^ "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Archived from the original on 2008-09-20. Retrieved 2010-05-07.
  17. ^ "Technology". SolarReserve. Archived from the original on 2008-01-19. Retrieved 2010-05-07.
  18. ^ a b c "ProCell Lithium battery chemistry". Duracell. Archived from the original on 2011-07-10. Retrieved 2009-04-21.
  19. ^ "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21.
  20. ^ "New battery could change world, one house at a time". Daily Herald. Utah. 2009-04-04. Archived from the original on 2015-10-17. Retrieved 2010-05-07.
  21. ^ Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) – Document #5960185". Proceedings of the Intersociety Energy Conversion Engineering Conference. 2. OSTI 5960185.
  22. ^ a b c d e "Battery energy storage in various battery types". AllAboutBatteries.com. Archived from the original on 2009-04-28. Retrieved 2009-04-21.
  23. ^ A typically available lithium-ion cell with an energy density of 201 wh/kg "Li-Ion 18650 Cylindrical Cell 3.6V 2600mAh – Highest Energy Density Cell in Market (LC-18650H4)". Archived from the original on 2008-12-01. Retrieved 2012-12-14.
  24. ^ "Lithium Batteries". Archived from the original on 2011-08-08. Retrieved 2010-07-02.
  25. ^ a b Lemire-Elmore, Justin (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF). p. 7: Table 3: Input and Output Energy from Batteries. Archived from the original (PDF) on 2012-09-13. Retrieved 2009-02-26.
  26. ^ "Storage Technology Report, ST6 Flywheel" (PDF). Archived from the original (PDF) on 2013-01-14. Retrieved 2012-12-14.
  27. ^ "Next-gen Of Flywheel Energy Storage". Product Design & Development. Archived from the original on 2010-07-10. Retrieved 2009-05-21.
  28. ^ "Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008" (PDF). Archived from the original (PDF) on 2010-01-04. Retrieved 2012-12-14.
  29. ^ "ZBB Energy Corp". Archived from the original on 2007-10-15. 75 to 85 watt-hours per kilogram
  30. ^ High Energy Metal Hydride Battery Archived 2009-09-30 at the Wayback Machine
  31. ^ "V-Fuel Company and Technology Sheet 2008" (PDF). Archived from the original (PDF) on 2010-11-22. Retrieved 2010-05-07.
  32. ^ "Ultracapacitors – BCAP3000". Maxwell Technologies. Retrieved 2010-05-07.
  33. ^ a b Zdenek, Cerovský; Pavel, Mindl. "Hybrid drive with super-capacitor energy storage" (PDF). Faculty of Mechanical Engineering CTU in Prague. Archived from the original (PDF) on 2012-07-22. Retrieved 2012-12-14.
  34. ^ [1] Archived February 16, 2010, at the Wayback Machine
  35. ^ Juvonen, Matti (7 February 2003). "Supercapacitors: replacing batteries" (lecture notes). Department of Computing, Imperial College London. Archived from the original on 2006-10-06. Retrieved 2012-12-14.
  36. ^ a b Rahman, M.; Slemon, G. (September 1985). "Promising applications of neodymium boron Iron magnets in electrical machines" (PDF). IEEE Transactions on Magnetics. 21 (5): 1712–1716. Bibcode:1985ITM....21.1712R. doi:10.1109/TMAG.1985.1064113. ISSN 0018-9464. Archived from the original on 13 May 2011.