In geometry , the dual snub 24-cell is a 144 vertex convex 4-polytope composed of 96 irregular cells . Each cell has faces of two kinds: three kites and six isosceles triangles. The polytope has a total of 432 faces (144 kites and 288 isosceles triangles) and 480 edges.
The snub 24-cell is a convex uniform 4-polytope that consists of 120 regular tetrahedra and 96 icosahedra as its cell , firstly described by Thorold Gosset in 1900. Its dual is a semiregular, first described by Koca, Al-Ajmi & Ozdes Koca (2011) .
The vertices of a dual snub 24-cell are obtained using quaternion simple roots
T
′
{\displaystyle T'}
in the generation of the 600 vertices of the 120-cell . The following describe
T
{\displaystyle T}
and
T
′
{\displaystyle T'}
24-cells as quaternion orbit weights of
D
4
{\displaystyle D_{4}}
under the Weyl group
W
(
D
4
)
{\displaystyle W(D_{4})}
:
O
(
0100
)
:
T
=
{
±
1
,
±
e
1
,
±
e
2
,
±
e
3
,
±
1
±
e
1
±
e
2
±
e
3
2
}
O
(
1000
)
:
V
1
O
(
0010
)
:
V
2
O
(
0001
)
:
V
3
T
′
=
2
(
V
1
⊕
V
2
⊕
V
3
)
=
[
−
1
−
e
1
2
1
−
e
1
2
−
1
+
e
1
2
1
+
e
1
2
−
e
2
−
e
3
2
e
2
−
e
3
2
−
e
2
+
e
3
2
e
2
+
e
3
2
−
1
−
e
2
2
1
−
e
2
2
−
1
+
e
2
2
1
+
e
2
2
−
e
1
−
e
3
2
e
1
−
e
3
2
−
e
1
+
e
3
2
e
1
+
e
3
2
−
e
1
−
e
2
2
e
1
−
e
2
2
−
e
1
+
e
2
2
e
2
+
e
3
2
−
1
−
e
3
2
1
−
e
3
2
−
1
+
e
3
2
1
+
e
3
2
]
.
{\displaystyle {\begin{aligned}O(0100)&:T=\left\{\pm 1,\pm e_{1},\pm e_{2},\pm e_{3},{\frac {\pm 1\pm e_{1}\pm e_{2}\pm e_{3}}{2}}\right\}\\O(1000)&:V_{1}\\O(0010)&:V_{2}\\O(0001)&:V_{3}\\T'&={\sqrt {2}}(V_{1}\oplus V_{2}\oplus V_{3})={\begin{bmatrix}{\frac {-1-e_{1}}{\sqrt {2}}}&{\frac {1-e_{1}}{\sqrt {2}}}&{\frac {-1+e_{1}}{\sqrt {2}}}&{\frac {1+e_{1}}{\sqrt {2}}}&{\frac {-e_{2}-e_{3}}{\sqrt {2}}}&{\frac {e_{2}-e_{3}}{\sqrt {2}}}&{\frac {-e_{2}+e_{3}}{\sqrt {2}}}&{\frac {e_{2}+e_{3}}{\sqrt {2}}}\\{\frac {-1-e_{2}}{\sqrt {2}}}&{\frac {1-e_{2}}{\sqrt {2}}}&{\frac {-1+e_{2}}{\sqrt {2}}}&{\frac {1+e_{2}}{\sqrt {2}}}&{\frac {-e_{1}-e_{3}}{\sqrt {2}}}&{\frac {e_{1}-e_{3}}{\sqrt {2}}}&{\frac {-e_{1}+e_{3}}{\sqrt {2}}}&{\frac {e_{1}+e_{3}}{\sqrt {2}}}\\{\frac {-e_{1}-e_{2}}{\sqrt {2}}}&{\frac {e_{1}-e_{2}}{\sqrt {2}}}&{\frac {-e_{1}+e_{2}}{\sqrt {2}}}&{\frac {e_{2}+e_{3}}{\sqrt {2}}}&{\frac {-1-e_{3}}{\sqrt {2}}}&{\frac {1-e_{3}}{\sqrt {2}}}&{\frac {-1+e_{3}}{\sqrt {2}}}&{\frac {1+e_{3}}{\sqrt {2}}}\end{bmatrix}}.\end{aligned}}}
With quaternions
(
p
,
q
)
{\displaystyle (p,q)}
where
p
¯
{\displaystyle {\bar {p}}}
is the conjugate of
p
{\displaystyle p}
and
[
p
,
q
]
:
r
→
r
′
=
p
r
q
{\displaystyle [p,q]:r\rightarrow r'=prq}
and
[
p
,
q
]
∗
:
r
→
r
″
=
p
r
¯
q
{\displaystyle [p,q]^{*}:r\rightarrow r''=p{\bar {r}}q}
, then the Coxeter group
W
(
H
4
)
=
{
[
p
,
p
¯
]
⊕
[
p
,
p
¯
]
∗
}
{\displaystyle W(H_{4})=\lbrace [p,{\bar {p}}]\oplus [p,{\bar {p}}]^{*}\rbrace }
is the symmetry group of the 600-cell and the 120-cell of order 14400.
Given
p
∈
T
{\displaystyle p\in T}
such that
p
¯
=
±
p
4
{\displaystyle {\bar {p}}=\pm p^{4}}
,
p
¯
2
=
±
p
3
{\displaystyle {\bar {p}}^{2}=\pm p^{3}}
,
p
¯
3
=
±
p
2
{\displaystyle {\bar {p}}^{3}=\pm p^{2}}
,
p
¯
4
=
±
p
{\displaystyle {\bar {p}}^{4}=\pm p}
and
p
†
{\displaystyle p^{\dagger }}
as an exchange of
−
1
/
ϕ
↔
ϕ
{\displaystyle -1/\phi \leftrightarrow \phi }
within
p
{\displaystyle p}
, where
ϕ
=
1
+
5
2
{\textstyle \phi ={\frac {1+{\sqrt {5}}}{2}}}
is the golden ratio , one can construct the snub 24-cell
S
{\displaystyle S}
, 600-cell
I
{\displaystyle I}
, 120-cell
J
{\displaystyle J}
, and alternate snub 24-cell
S
′
{\displaystyle S'}
in the following, respectively:
S
=
∑
i
=
1
4
⊕
p
i
T
,
I
=
T
+
S
=
∑
i
=
0
4
⊕
p
i
T
,
J
=
∑
i
,
j
=
0
4
⊕
p
i
p
¯
†
j
T
′
,
S
′
=
∑
i
=
1
4
⊕
p
i
p
¯
†
i
T
′
.
{\displaystyle {\begin{aligned}S=\sum _{i=1}^{4}\oplus p^{i}T,&\qquad I=T+S=\sum _{i=0}^{4}\oplus p^{i}T,\\J=\sum _{i,j=0}^{4}\oplus p^{i}{\bar {p}}^{\dagger j}T',&\qquad S'=\sum _{i=1}^{4}\oplus p^{i}{\bar {p}}^{\dagger i}T'.\end{aligned}}}
This finally can define the dual snub 24-cell as the orbits of
T
⊕
T
′
⊕
S
′
{\displaystyle T\oplus T'\oplus S'}
.
The cell of dual snub 24-cell
The dual snub 24-cell has 96 identical cells. The cell can be constructed by multiplying
1
2
2
{\textstyle {\frac {1}{2{\sqrt {2}}}}}
to the eight Cartesian coordinates:
(
−
ϕ
,
0
,
1
)
,
(
0
,
−
1
,
−
ϕ
)
,
(
1
,
ϕ
,
0
)
,
(
−
φ
,
φ
,
−
φ
)
,
(
φ
,
−
φ
,
φ
)
,
(
φ
2
,
0
,
1
)
,
(
1
,
−
φ
2
,
0
)
,
(
0
,
−
1
,
φ
2
)
,
{\displaystyle {\begin{matrix}(-\phi ,0,1),&\qquad (0,-1,-\phi ),&\qquad (1,\phi ,0),\\(-\varphi ,\varphi ,-\varphi ),&\qquad (\varphi ,-\varphi ,\varphi ),&\qquad (\varphi ^{2},0,1),\\(1,-\varphi ^{2},0),&\qquad (0,-1,\varphi ^{2}),\end{matrix}}}
where
ϕ
=
1
+
5
2
{\textstyle \phi ={\frac {1+{\sqrt {5}}}{2}}}
and
φ
=
1
−
5
2
{\textstyle \varphi ={\frac {1-{\sqrt {5}}}{2}}}
. These vertices form six isosceles triangles and three kites , where the legs and the base of an isosceles triangle are
1
2
{\textstyle {\frac {1}{\sqrt {2}}}}
and
ϕ
2
{\textstyle {\frac {\phi }{\sqrt {2}}}}
, and the two pairs of adjacent equal-length sides of a kite are
1
2
{\textstyle {\frac {1}{\sqrt {2}}}}
and
φ
2
2
{\textstyle {\frac {\varphi ^{2}}{\sqrt {2}}}}
.
Gosset, Thorold (1900). "On the Regular and Semi-Regular Figures in Space of n Dimensions". Messenger of Mathematics . Macmillan.
Coxeter, H.S.M. (1973) [1948]. Regular Polytopes (3rd ed.). New York: Dover.
Conway, John ; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). The Symmetries of Things . ISBN 978-1-56881-220-5 .
Koca, Mehmet; Al-Ajmi, Mudhahir; Ozdes Koca, Nazife (2011). "Quaternionic representation of snub 24-cell and its dual polytope derived from
E
8
{\displaystyle E_{8}}
root system" . Linear Algebra and Its Applications . 434 (4): 977– 989. arXiv :0906.2109 . doi :10.1016/j.laa.2010.10.005 . ISSN 0024-3795 . S2CID 18278359 .
Koca, Mehmet; Ozdes Koca, Nazife; Al-Barwani, Muataz (2012). "Snub 24-Cell Derived from the Coxeter-Weyl Group
W
(
D
4
)
{\displaystyle W(D_{4})}
" . Int. J. Geom. Methods Mod. Phys . 09 (8). arXiv :1106.3433 . doi :10.1142/S0219887812500685 . S2CID 119288632 .