Draft:Bakman Technologies

Bakman Technologies LLC
Company typePrivate
IndustryTerahertz spectroscopy, photonics
FoundedJanuary 2015
FounderJoseph R. Demers
Headquarters
Los Angeles, California
,
United States
Key people
Joseph R. Demers (CEO)
ProductsPortable frequency-domain terahertz spectrometers, White cells, photomixers

Bakman Technologies LLC is an American company that designs and manufactures frequency-domain terahertz (THz) spectrometers and photonic components.

History

[edit]

In December 2014, as part of a general corporate restructuring and change of board control, several divisions of Emcore Corporation were divested and spun off. The Advanced Photonics Division, which included their Terahertz (THz) products and technology, was sold to Bakman Technologies.

Technology and applications

[edit]

The PB7000 series of THz spectrometers employ coherent frequency-domain THz spectroscopy photomixing. This makes the technology suitable for various applications including: determining detection limits for trace isotopologues,[1] performing real-time airborne gas analysis from a consumer drone,[2] examining electronic and magnetic materials at low temperatures,[3] reducing Fabry–Perot interference and system dispersion in continuous-wave THz coherence measurements,[4] testing silicon gradient refractive index lenses for millimeter-wave radiometers,[5] testing tunable graphene-based metamaterial THz modulators,[6], Developing modulation-capable silicon waveguides for on-wafer THz interconnects,[7] fabricating affordable THz components via 3D printing,[8] advancing broadband impedance matching to two-dimensional materials,[9]

Images

[edit]

See also

[edit]
  • Terahertz spectroscopy
  • White cell
  • Photomixing
  • Coherent detection

References

[edit]
  1. ^ Demers, J.R.; Dale, E. (2019). "Determining DHO detection limits for a frequency domain THz spectrometer coupled to a light-weight multi-pass sample cell". 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). p. 1. doi:10.1109/IRMMW-THz.2019.8874469.
  2. ^ Demers, J.R.; Garet, F.; Coutaz, J.-L. (2018). "A UAV-mounted THz spectrometer for real-time gas analysis". Proc. SPIE 10531, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI. pp. 105310K. doi:10.1117/12.2290765 (inactive 16 August 2025).{{cite conference}}: CS1 maint: DOI inactive as of August 2025 (link)
  3. ^ Daughton, D.R.; Higgins, R.; Yano, S.; Demers, J.R. (2012). "Coherent THz spectroscopy with photomixers in cryogenic environments". Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2012 37th International Conference. pp. 1–2.
  4. ^ Lin, Qi; Lin, Zhongxi; Li, Yong; Su, Hui; Ma, Fusheng (2020). "Reduce the effects of Fabry–Perot interference and system dispersion in continuous wave terahertz coherence measurements with two optical-path differences". Optics and Lasers in Engineering. 134 106234. Bibcode:2020OptLE.13406234L. doi:10.1016/j.optlaseng.2020.106234. ISSN 0143-8166.
  5. ^ Pursula, P.; Lamminen, A.; Mannila, R.; Tappura, K.; Saarilahti, J. (2019). "Silicon Gradient Refractive Index Lens for Millimeter Wave Radiometers". 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Paris, France. pp. 1–3. doi:10.1109/IRMMW-THz.2019.8874541.
  6. ^ Yan, R. (2013). "Tunable graphene-based metamaterial terahertz modulators". CLEO: 2013. San Jose, CA, USA. pp. 1–2.
  7. ^ Myers, J.C.; Kaur, A.; Byford, J.A.; Chahal, P. (2015). "Investigation of modulation-capable silicon waveguides for efficient on-wafer terahertz interconnects". 2015 IEEE 65th Electronic Components and Technology Conference (ECTC). San Diego, CA, USA. pp. 1010–1016. doi:10.1109/ECTC.2015.7159719.
  8. ^ Kaur, A.; Myers, J.C.; Ghazali, M.I.M.; Byford, J.; Chahal, P. (2015). "Affordable terahertz components using 3D printing". 2015 IEEE 65th Electronic Components and Technology Conference (ECTC). San Diego, CA, USA. pp. 2071–2076. doi:10.1109/ECTC.2015.7159888.
  9. ^ Pham, P.H.Q.; Zhang, W.; Quach, N.V. (2017). "Broadband impedance match to two-dimensional materials in the terahertz domain". Nature Communications. 8 (1) 2233. Bibcode:2017NatCo...8.2233P. doi:10.1038/s41467-017-02336-z. PMC 5738418. PMID 29263423.