Birch and Swinnerton-Dyer conjecture

In mathematics, the Birch and Swinnerton-Dyer conjecture (often called the Birch–Swinnerton-Dyer conjecture) describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory and is widely recognized as one of the most challenging mathematical problems. It is named after mathematicians Bryan John Birch and Peter Swinnerton-Dyer, who formulated the conjecture in the 1960s with the help of machine computation.[1] Only special cases of the conjecture have been proven.

The conjecture proposes a link between arithmetic data associated with an elliptic curve over a number field and the behaviour of its associated Hasse–Weil L-function at . More specifically, it is conjectured that the rank of the abelian group of points of is the order of the zero of at . The first non-zero coefficient in the Taylor expansion of at is given by more refined arithmetic data attached to over (Wiles 2006).

The conjecture was chosen as one of the seven Millennium Prize Problems listed by the Clay Mathematics Institute, which has offered a $1,000,000 prize for the first correct proof.[2]

Background

[edit]

In 1922, Louis J. Mordell proved Mordell's theorem, stating that the group of rational points on an elliptic curve has a finite basis.[3] This means that for any elliptic curve, there is a finite subset of the rational points on the curve, from which all further rational points may be generated.[3]

If the number of rational points on a curve is infinite then some point in a finite basis must have infinite order. The number of independent basis points with infinite order is called the rank of the curve, and is an important invariant property of an elliptic curve.

If the rank of an elliptic curve is 0, then the curve has only a finite number of rational points. On the other hand, if the rank of the curve is greater than 0, then the curve has an infinite number of rational points.

Although Mordell's theorem shows that the rank of an elliptic curve is always finite, it does not give an effective method for calculating the rank of every curve. The rank of certain elliptic curves can be calculated using numerical methods but it is currently unknown if these methods handle all curves.

An -function can be defined for an elliptic curve by constructing an Euler product from the number of points on the curve modulo each prime . This -function is analogous to the Riemann zeta function and the Dirichlet L-series that is defined for a binary quadratic form. It is a special case of a Hasse–Weil L-function.

The natural definition of only converges for values of in the complex plane with . Helmut Hasse conjectured that could be extended by analytic continuation to the whole complex plane.[citation needed] This conjecture was first proved by Max Deuring for elliptic curves with complex multiplication.[4] It was subsequently shown to be true for all elliptic curves over , as a consequence of the modularity theorem in 2001.[citation needed]

Finding rational points on a general elliptic curve is a difficult problem. Finding the points on an elliptic curve modulo a given prime is conceptually straightforward, as there are only a finite number of possibilities to check. However, for large primes it is computationally intensive.

History

[edit]

In the early 1960s, Peter Swinnerton-Dyer used the EDSAC-2 computer at the University of Cambridge Computer Laboratory to calculate the number of points modulo for a large number of primes on elliptic curves whose rank was known. From these numerical results, Swinnerton-Dyer and his colleage Bryan John Birch conjectured[1] that for a curve with rank , obeys the asymptotic law

,

where is a constant.

Initially, this was based on somewhat tenuous trends in graphical plots; this induced a measure of skepticism in Birch's advisor J. W. S. Cassels.[5] Over time, however, the numerical evidence stacked up.

This in turn led Birch and Swinnerton-Dyer to make a general conjecture about the behavior of a curve's L-function at ; namely, that it would have a zero of order at this point. This was a far-sighted conjecture for the time, given that the analytic continuation of was only established for curves with complex multiplication, which were also the main source of numerical examples. (Note that the reciprocal of the L-function is from some points of view a more natural object of study; on occasion, this means that one should consider poles rather than zeroes.)

The conjecture was subsequently extended to include the prediction of the precise leading Taylor coefficient of the L-function at . It is conjecturally given by[6]

,

where is the order of the torsion group, Ш is the order of the Tate–Shafarevich group, is the real period of multiplied by the number of connected components of , is the regulator of (defined via the canonical heights of a basis of rational points), and is the Tamagawa number of at a prime dividing the conductor of . It can be found by Tate's algorithm.

When the conjecture was originally made, little was known, not even whether the left (analytic) side or the right (algebraic) side of this equation were even well-defined. John Tate expressed this in 1974 in a famous quote.[7]: 198 

This remarkable conjecture relates the behavior of a function at a point where it is not at present known to be defined to the order of a group Ш which is not known to be finite!

By the modularity theorem proved in 2001 for elliptic curves over ,[citation needed] the left side is now known to be well-defined and the finiteness of Ш is known when additionally the analytic rank is at most 1; i.e., if vanishes at most to order 1 at . Both parts remain open.

Current status

[edit]
A plot, in blue, of for the curve as varies over the first 100000 primes. The -axis is in log(log) scale ( is drawn at distance proportional to from 0) and the -axis is in a logarithmic scale, so the conjecture predicts that the data should tend to a line of slope equal to the rank of the curve, which is 1 in this case; that is,  : as , with , as in the text. For comparison, a line of slope 1 in (log(log),log)-scale with equation is drawn in red in the plot.

The Birch and Swinnerton-Dyer conjecture has been proved only in special cases:

  1. Coates & Wiles (1977) proved that if is a curve over a number field with complex multiplication by an imaginary quadratic field of class number 1, or , and is not zero, then is a finite group. This was extended to the case where is any finite abelian extension of by Arthaud (1978).
  2. Gross & Zagier (1986) showed that if a modular elliptic curve has a first-order zero at , then it has a rational point of infinite order; see Gross–Zagier theorem.
  3. Kolyvagin (1989) showed that a modular elliptic curve for which is not zero has rank 0, and a modular elliptic curve for which has a first-order zero at has rank 1.
  4. Rubin (1991) showed that for elliptic curves defined over an imaginary quadratic field with complex multiplication by , if the L-series of the elliptic curve was not zero at , then the -part of the Tate–Shafarevich group had the order predicted by the Birch and Swinnerton-Dyer conjecture, for all primes .
  5. Breuil et al. (2001), extending work of Wiles (1995), proved that all elliptic curves defined over the rational numbers are modular, which extends results #2 and #3 to all elliptic curves over the rationals, and shows that the L-functions of all elliptic curves over are defined at .
  6. Bhargava & Shankar (2015) proved that the average rank of the Mordell–Weil group of an elliptic curve over is bounded above by . Combining this with the -parity theorem of Nekovář (2009), and Dokchitser & Dokchitser (2010) and with the proof of the main conjecture of Iwasawa theory for by Skinner & Urban (2014), they conclude that a positive proportion of elliptic curves over have analytic rank zero, and hence, by Kolyvagin (1989), satisfy the Birch and Swinnerton-Dyer conjecture.

There are currently no proofs involving curves with a rank greater than 1.

There is extensive numerical evidence for the truth of the conjecture.[8]

Consequences

[edit]

Much like the Riemann hypothesis, this conjecture has multiple consequences, including the following two:

  • Let n be an odd square-free integer. Assuming the Birch and Swinnerton-Dyer conjecture, n is the area of a right triangle with rational side lengths (a congruent number) if and only if the number of triplets of integers (x, y, z) satisfying 2x2 + y2 + 8z2 = n is twice the number of triplets satisfying 2x2 + y2 + 32z2 = n. This statement, due to Tunnell's theorem (Tunnell 1983), is related to the fact that n is a congruent number if and only if the elliptic curve y2 = x3n2x has a rational point of infinite order (thus, under the Birch and Swinnerton-Dyer conjecture, its L-function has a zero at 1). The interest in this statement is that the condition is easily verified.[9]
  • In a different direction, certain analytic methods allow for an estimation of the order of zero in the center of the critical strip of families of L-functions. Admitting the BSD conjecture, these estimations correspond to information about the rank of families of elliptic curves in question. For example: suppose the generalized Riemann hypothesis and the BSD conjecture, the average rank of curves given by y2 = x3 + ax+ b is smaller than 2.[10]
  • Because of the existence of the functional equation of the L-function of an elliptic curve, BSD allows us to calculate the parity of the rank of an elliptic curve. This is a conjecture in its own right called the parity conjecture, and it relates the parity of the rank of an elliptic curve to its global root number. This leads to many explicit arithmetic phenomena which are yet to be proved unconditionally. For instance:
    • Every positive integer n ≡ 5, 6 or 7 (mod 8) is a congruent number.
    • The elliptic curve given by y2 = x3 + ax + b where ab (mod 2) has infinitely many solutions over .
    • Every positive rational number d can be written in the form d = s2(t3 – 91t – 182) for s and t in .
    • For every rational number t, the elliptic curve given by y2 = x(x2 – 49(1 + t4)2) has rank at least 1.
    • There are many more examples for elliptic curves over number fields.

Generalizations

[edit]

There is a version of this conjecture for general abelian varieties over number fields. A version for abelian varieties over is the following:[11]: 462 

All of the terms have the same meaning as for elliptic curves, except that the square of the order of the torsion needs to be replaced by the product involving the dual abelian variety . Elliptic curves as 1-dimensional abelian varieties are their own duals, i.e. , which simplifies the statement of the BSD conjecture. The regulator needs to be understood for the pairing between a basis for the free parts of and relative to the Poincare bundle on the product .

The rank-one Birch-Swinnerton-Dyer conjecture for modular elliptic curves and modular abelian varieties of GL(2)-type over totally real number fields was proved by Shou-Wu Zhang in 2001.[12][13]

Another generalization is given by the Bloch-Kato conjecture.[14]

Notes

[edit]
  1. ^ a b Birch, Bryan; Swinnerton-Dyer, Peter (1965). "Notes on elliptic curves (II)". J. Reine. Angew. Math. 165 (218): 79–108. doi:10.1515/crll.1965.218.79. S2CID 122531425.
  2. ^ Birch and Swinnerton-Dyer Conjecture at Clay Mathematics Institute
  3. ^ a b Mordell, L. J. (1922). "On the rational solutions of the indeterminate equations of the third and fourth degrees". Mathematical Proceedings of the Cambridge Philosophical Society. 21: 179–192.
  4. ^ Deuring, Max (1941). "Die Typen der Multiplikatorenringe elliptischer Funktionenkörper". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 14 (1): 197–272. doi:10.1007/BF02940746. S2CID 124821516.
  5. ^ Stewart, Ian (2013), Visions of Infinity: The Great Mathematical Problems, Basic Books, p. 253, ISBN 9780465022403, Cassels was highly skeptical at first.
  6. ^ Cremona, John (2011). "Numerical evidence for the Birch and Swinnerton-Dyer Conjecture" (PDF). Talk at the BSD 50th Anniversary Conference, May 2011., page 50
  7. ^ Tate, John T. (1974). "The arithmetic of elliptic curves". Invent Math. 23 (3–4): 179–206. Bibcode:1974InMat..23..179T. doi:10.1007/BF01389745., page 198
  8. ^ Cremona, John (2011). "Numerical evidence for the Birch and Swinnerton-Dyer Conjecture" (PDF). Talk at the BSD 50th Anniversary Conference, May 2011.
  9. ^ Koblitz, Neal (1993). Introduction to Elliptic Curves and Modular Forms. Graduate Texts in Mathematics. Vol. 97 (2nd ed.). Springer-Verlag. ISBN 0-387-97966-2.
  10. ^ Heath-Brown, D. R. (2004). "The Average Analytic Rank of Elliptic Curves". Duke Mathematical Journal. 122 (3): 591–623. arXiv:math/0305114. doi:10.1215/S0012-7094-04-12235-3. MR 2057019. S2CID 15216987.
  11. ^ Hindry, Marc; Silverman, Joseph H. (2000). Diophantine Geometry: An Introduction. Graduate Texts in Mathematics. Vol. 201. New York, NY: Springer. p. 462. doi:10.1007/978-1-4612-1210-2. ISBN 978-0-387-98975-4.
  12. ^ Zhang, Wei (2013). "The Birch–Swinnerton-Dyer conjecture and Heegner points: a survey". Current Developments in Mathematics. 2013: 169–203. doi:10.4310/CDM.2013.v2013.n1.a3..
  13. ^ Leong, Y. K. (July–December 2018). "Shou-Wu Zhang: Number Theory and Arithmetic Algebraic Geometry" (PDF). Imprints. No. 32. The Institute for Mathematical Sciences, National University of Singapore. pp. 32–36. Retrieved 5 May 2019.
  14. ^ Kings, Guido (2003). "The Bloch–Kato conjecture on special values of L-functions. A survey of known results". Journal de théorie des nombres de Bordeaux. 15 (1): 179–198. doi:10.5802/jtnb.396. ISSN 1246-7405. MR 2019010.

References

[edit]
[edit]