Anthrone
| Names | |
|---|---|
| Preferred IUPAC name
Anthracen-9(10H)-one | |
Other names
| |
| Identifiers | |
3D model (JSmol)
|
|
| ChEBI | |
| ChEMBL | |
| ChemSpider | |
| ECHA InfoCard | 100.001.813 |
PubChem CID
|
|
| UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
| Properties | |
| C14H10O | |
| Molar mass | 194.233 g·mol−1 |
| Appearance | White to light yellow needles |
| Melting point | 155 to 158 °C (311 to 316 °F; 428 to 431 K) |
| Insoluble | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
| |
Anthrone is a tricyclic aromatic ketone. It is used for a common cellulose assay and in the colorimetric determination of carbohydrates.[1]
Derivatives of anthrone are used in pharmacy as laxative. They stimulate the motion of the colon and reduce water reabsorption. Some anthrone derivatives can be extracted from a variety of plants, including Rhamnus frangula, Aloe ferox, Rheum officinale, and Cassia senna.[2] Glycosides of anthrone are also found in high amounts in rhubarb leaves, and alongside concentrated amounts of oxalic acid are the reason for the leaves being inedible.
Synthesis and reactions
[edit]Anthrone can be prepared from anthraquinone by reduction with tin or copper.[3]
An alternative synthesis involves cyclization of o-benzylbenzoic acid induced with hydrogen fluoride.[4]

Anthrone condenses with glyoxal to give, following dehydrogenation, acedianthrone, a useful octacyclic pigment.[5]

Anthrone is the more stable tautomer relative to the anthrol as has been established also by X-ray crystallography.[6] The tautomeric equilibrium is estimated at 100 in aqueous solution. For the two other isomeric anthrols, the tautomeric equilibrium is reversed: they are phenolic.[7]
Anthrone undergoes nitration using conventional conditions for aromatic nitration, implying that it is the hydroxy tautomer that is the reactant.[8]
References
[edit]- ^ Trevelyan, W. E.; Forrest, RS; Harrison, JS (1952). "Determination of Yeast Carbohydrates with the Anthrone Reagent". Nature. 170 (4328): 626–627. Bibcode:1952Natur.170..626T. doi:10.1038/170626a0. PMID 13002392. S2CID 4184596.
- ^ Niaz, Kamal; Khan, Fazlullah (2020-01-01), Sanches Silva, Ana; Nabavi, Seyed Fazel; Saeedi, Mina; Nabavi, Seyed Mohammad (eds.), "Chapter 3 - Analysis of polyphenolics", Recent Advances in Natural Products Analysis, Elsevier, pp. 39–197, doi:10.1016/b978-0-12-816455-6.00003-2, ISBN 978-0-12-816455-6, retrieved 2024-06-01
- ^ Macleod, L. C.; Allen, C. F. H. (1934). "Benzanthrone". Organic Syntheses. 14: 4. doi:10.15227/orgsyn.014.0004.
- ^ Fieser, Louis F.; Hershberg, E. B. (May 1939). "Inter- and Intramolecular Acylations with Hydrogen Fluoride". Journal of the American Chemical Society. 61 (5): 1272–1281. Bibcode:1939JAChS..61.1272F. doi:10.1021/ja01874a079.
- ^ Bien, H.-S.; Stawitz, J.; Wunderlich, K. (2005). "Anthraquinone Dyes and Intermediates". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_355. ISBN 978-3-527-30673-2.
- ^ Lian, Jian-Jou; Lin, Chung-Chang; Chang, Hsu-Kai; Chen, Po-Chiang; Liu, Rai-Shung (2006). "Thermal and Metal-Catalyzed Cyclization of 1-Substituted 3,5-Dien-1-ynes via a [1,7]-Hydrogen Shift: Development of a Tandem Aldol Condensation−Dehydration and Aromatization Catalysis between 3-En-1-yn-5-al Units and Cyclic Ketones". Journal of the American Chemical Society. 128 (30): 9661–9667. Bibcode:2006JAChS.128.9661L. doi:10.1021/ja061203b. PMID 16866518.
- ^ Ośmiałowski, Borys; Raczyńska, Ewa D.; Krygowski, Tadeusz M. (2006). "Tautomeric Equilibria and Pi Electron Delocalization for Some Monohydroxyarenes Quantum Chemical Studies". The Journal of Organic Chemistry. 71 (10): 3727–3736. doi:10.1021/jo052615q. PMID 16674042.
- ^ Kurt H. Meyer (1928). "Nitroanthrone". Organic Syntheses. 8: 78. doi:10.15227/orgsyn.008.0078.

