Anthrone

Anthrone
Skeletal formula
Skeletal formula
Ball-and-stick model
Ball-and-stick model
Names
Preferred IUPAC name
Anthracen-9(10H)-one
Other names
  • Carbothrone
  • 9-Oxoanthracene
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.001.813 Edit this at Wikidata
UNII
  • InChI=1S/C14H10O/c15-14-12-7-3-1-5-10(12)9-11-6-2-4-8-13(11)14/h1-8H,9H2 checkY
    Key: RJGDLRCDCYRQOQ-UHFFFAOYSA-N checkY
  • InChI=1/C14H10O/c15-14-12-7-3-1-5-10(12)9-11-6-2-4-8-13(11)14/h1-8H,9H2
    Key: RJGDLRCDCYRQOQ-UHFFFAOYAA
  • O=C2c1c(cccc1)Cc3c2cccc3
Properties
C14H10O
Molar mass 194.233 g·mol−1
Appearance White to light yellow needles
Melting point 155 to 158 °C (311 to 316 °F; 428 to 431 K)
Insoluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Anthrone is a tricyclic aromatic ketone. It is used for a common cellulose assay and in the colorimetric determination of carbohydrates.[1]

Derivatives of anthrone are used in pharmacy as laxative. They stimulate the motion of the colon and reduce water reabsorption. Some anthrone derivatives can be extracted from a variety of plants, including Rhamnus frangula, Aloe ferox, Rheum officinale, and Cassia senna.[2] Glycosides of anthrone are also found in high amounts in rhubarb leaves, and alongside concentrated amounts of oxalic acid are the reason for the leaves being inedible.

Synthesis and reactions

[edit]

Anthrone can be prepared from anthraquinone by reduction with tin or copper.[3]

An alternative synthesis involves cyclization of o-benzylbenzoic acid induced with hydrogen fluoride.[4]

Anthrone syntheses

Anthrone condenses with glyoxal to give, following dehydrogenation, acedianthrone, a useful octacyclic pigment.[5]

Tautomeric equilibrium for anthrone.

Anthrone is the more stable tautomer relative to the anthrol as has been established also by X-ray crystallography.[6] The tautomeric equilibrium is estimated at 100 in aqueous solution. For the two other isomeric anthrols, the tautomeric equilibrium is reversed: they are phenolic.[7]

Anthrone undergoes nitration using conventional conditions for aromatic nitration, implying that it is the hydroxy tautomer that is the reactant.[8]

References

[edit]
  1. ^ Trevelyan, W. E.; Forrest, RS; Harrison, JS (1952). "Determination of Yeast Carbohydrates with the Anthrone Reagent". Nature. 170 (4328): 626–627. Bibcode:1952Natur.170..626T. doi:10.1038/170626a0. PMID 13002392. S2CID 4184596.
  2. ^ Niaz, Kamal; Khan, Fazlullah (2020-01-01), Sanches Silva, Ana; Nabavi, Seyed Fazel; Saeedi, Mina; Nabavi, Seyed Mohammad (eds.), "Chapter 3 - Analysis of polyphenolics", Recent Advances in Natural Products Analysis, Elsevier, pp. 39–197, doi:10.1016/b978-0-12-816455-6.00003-2, ISBN 978-0-12-816455-6, retrieved 2024-06-01
  3. ^ Macleod, L. C.; Allen, C. F. H. (1934). "Benzanthrone". Organic Syntheses. 14: 4. doi:10.15227/orgsyn.014.0004.
  4. ^ Fieser, Louis F.; Hershberg, E. B. (May 1939). "Inter- and Intramolecular Acylations with Hydrogen Fluoride". Journal of the American Chemical Society. 61 (5): 1272–1281. Bibcode:1939JAChS..61.1272F. doi:10.1021/ja01874a079.
  5. ^ Bien, H.-S.; Stawitz, J.; Wunderlich, K. (2005). "Anthraquinone Dyes and Intermediates". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_355. ISBN 978-3-527-30673-2.
  6. ^ Lian, Jian-Jou; Lin, Chung-Chang; Chang, Hsu-Kai; Chen, Po-Chiang; Liu, Rai-Shung (2006). "Thermal and Metal-Catalyzed Cyclization of 1-Substituted 3,5-Dien-1-ynes via a [1,7]-Hydrogen Shift: Development of a Tandem Aldol Condensation−Dehydration and Aromatization Catalysis between 3-En-1-yn-5-al Units and Cyclic Ketones". Journal of the American Chemical Society. 128 (30): 9661–9667. Bibcode:2006JAChS.128.9661L. doi:10.1021/ja061203b. PMID 16866518.
  7. ^ Ośmiałowski, Borys; Raczyńska, Ewa D.; Krygowski, Tadeusz M. (2006). "Tautomeric Equilibria and Pi Electron Delocalization for Some Monohydroxyarenes Quantum Chemical Studies". The Journal of Organic Chemistry. 71 (10): 3727–3736. doi:10.1021/jo052615q. PMID 16674042.
  8. ^ Kurt H. Meyer (1928). "Nitroanthrone". Organic Syntheses. 8: 78. doi:10.15227/orgsyn.008.0078.