Aganane Formation
Aganane Formation | |
---|---|
Stratigraphic range: Pliensbachian ~ | |
![]() Exposed lagoonal sequences of the Aganane Formation in South Todhra | |
Type | Geological formation |
Unit of | High Atlas |
Underlies | |
Overlies | |
Area | Central High Atlas |
Thickness | 600 m |
Lithology | |
Primary | Limestone, dolomite |
Other | Sandstones, Claystone, Shale, Conglomerate |
Location | |
Coordinates | 31°36′N 6°24′W / 31.6°N 6.4°W |
Approximate paleocoordinates | 25°54′N 4°18′W / 25.9°N 4.3°W |
Region |
|
Country | Morocco |
Type section | |
Named for | Aganane Village, near Tizouggaghiyn |
The Aganane Formation is a Pliensbachian (Early Jurassic), with some levels being potentially Latest Sinemurian, geologic formation in the Khenifra, Midelt, Azilal, Béni-Mellal, Ouarzazate, Tinerhir and Errachidia areas, in the Middle and High Atlas of Morocco, being the remnant of a local massive Carbonate platform, and known mostly for its rich tracksites (up to 1350 tracks in 1988) including footprints of dinosaurs.[1][2][3] Is (in part) coeval with the Calcaires du Bou Dahar.[4] This unit is know by other multiple synonymous names such as Aït Chitachen, Aït Bazzi, Aghbalou or Assemsouk Formation in the High Atlas and Calcaires de Tizi Nehassa in the Middle Atlas.[5][6][7]
This formation has been dated to the Pliensbachian stage of the Lower Jurassic, thanks to the find of the ammonite Arieticeras cf. algovianum, indicator of Middle Domerian (=Uppermost Pliensbachian) in the upper zone, and lower delimitation by the foraminifers Mayncina termieri and Orbitopsella praecursor (indicators of Lower Pliensbachian age).[8]
The Aganane Formation starts at the W sequences referred to either the synonyms "Aït Chitachen/Aït Bazzi" Formations at sectors such as Demnate or Telouet (continental-fluvial, coastal lagoon) and Azilal area.[9] At Tazoult, part of the Azilal profile contacts the bottom with the karst Talmest-Tazoult Formation, then a section where the Aganane itself indicates an eastward expansion of the carbonate facies, finally, a westward advance of the Imilchil pelagic facies, mostly part of the Jbel Choucht Formation or Ouchbis Formation.[9]
Lithology
[edit]The Aganane Formation is a thick carbonate sequence, up to 600 m, stratigraphically positioned between the Imi-n-Ifri Formation (dolomites and limestones) and the Tafraout Group (red sandstones and pelites). Its boundaries are mostly transitional, though local erosional discordances occur.[10]
Lithologies vary across the basin. In the SW (Demnate area), facies include brecciated dolomites with gypsum lenses, cavernous dolomites, red marls, and basal sandstone-pelitic layers with rhizoliths, indicating episodes of desiccation. Towards Azilal, the unit is dominated by cyclic dolomitic and calcareous beds, with interbedded marls and fossil-rich limestones, organized into three subunits reflecting successive marine to emergent phases.[11] At Zaouiat Ahansal is divided in 3 sub-units: 1st with red marls and features fossil-rich limestones, evolving from mudstones to oolitic grainstones, capped by an oxidized discontinuity; 2nd mirrors this lithology but spanning packstones to biomicrites with algae and oncoliths and finally the 3rd begins above an emersion surface and ends the formation with thick, fossiliferous limestones transitioning to detrital deposits, marked by tectonic cracks at its top.[12] Around the Goulmima fault, thick evaporitic successions (gypsum and anhydrite) developed in subsiding sebkhas ("Aghbalou formation"), later redefined as specific facies of this formation.[7]
Characteristic features include stromatolitic dolomites, diverse microfacies (mudstones, packstones, grainstones, biomicrites), biostromes with large bivalves, intraformational megabreccias, and cyclic deposits with siliceous nodules.[2] Sedimentary structures such as Stromatolites, Teepee-like features, and desiccation cracks indicate repeated emergence, supporting the interpretation of a dynamic coastal to intertidal depositional system.[11][13]
Environments
[edit]The Aganane Formation represents the coastal–shallow sector of a large carbonate platform, where diagenetic features consistently recorded environmental changes and may even reflect major events such as Hurricanes.[14][15] The formation displays marked west–east variations: red marly lagoonal–brackish deposits grade into lagoonal facies (locally evaporitic), then into marly–dolomitic and marly–calcareous lagoonal–marine facies. At the eastern edge of the Afourar map, it becomes coralligenous, integrating with underlying calcareous–dolomitic strata to form a reefal complex. This reefal barrier separated the cephalopod-rich facies of the Inner Atlas, complicating stratigraphic correlations.[16]
The supratidal sector is diverse, including quartz-rich continental deposits, fluvial channels, and thick gypsum–cargneule successions, along with dolomitic shales and marls containing desiccation cracks, caliche crusts, and pisoliths.[17] These indicate a continental zone bordering river systems, grading into coastal sabkhas where shales, siltstones, and interstitial evaporites accumulated.[18][14] North of the Demnate fault, a broad subsiding tidal flat developed, where carbonate deposits with gypsum relics and stromatolitic laminites formed, interspersed with desiccation polygons and gypsum precipitated in sebkhas, suggesting an arid climate.[10] Along the Demnate fault, lignite layers appear, probably derived from degraded forests to the south, as indicated by root traces in basal sandstones (locally the "Aït-Bazzi Formation") near Aït Tioutline, and laterally expressed as red marls with paleosols and chaotic dolomitic sequences in W Zaouiat Ahansal.[6] Herbivorous and carnivorous dinosaurs also inhabited these coastal marshlands.[10]
In the intertidal zone, pelletoid lime packstones and wackestones, often bioturbated, indicate shallow low-energy conditions with variable terrigenous input. Fenestral fabrics and bivalves also support intertidal to shallow subtidal environments.[17] Mudstones and wackestones with occasional bivalves represent brackish–lagoonal settings, while oolitic cross-bedded grainstones mark high-energy tidal bars. Crinoid and mollusc-rich packstones reflect quieter shoal environments.[17] Algal laminated boundstones developed in both supratidal and intertidal zones, similar to modern Shark Bay and the Persian Gulf. Pelletoid packstone–wackestone facies likely formed in tidal flats, comparable to present-day mangrove belts.[18][14] More massive facies with Plicatostylidae bivalves separated tidal flats from open marine deposits with Ammonites, whose extent reached the eastern Azilal margin.[10]
Subtidal deposits include lagoonal skeletal packstones, oolitic tidal deltas, offshore bars, oncoliths, and coral reefs. Occasional Opisoma bivalves occur, while farther east flint-bearing calcareous shales with ammonites signal more open-marine conditions.[14][18]

Reefs from Ait Athmane, Aghbalou N'Kerdous and Assemsouk show typical Sinemurian–Pliensbachian Plicatostylidae assemblages.[19][20][21] Locally, these reefs evolved from shallow subtidal floatstones to layers with lagoonal marls, red mudstones with root traces, and calcrete, indicating subaerial exposure.[20] The faunas include aberrant Plicatostylidae (Lithioperna, Cochlearites), corals, gastropods, Opisoma, and oncoids, forming sheltered lagoonal communities comparable to the Rotzo Formation of the Trento Platform.[20] At Jebel Azourki, biofacies include tidal-channel structures, bivalve mounds, cross-bedded channel fills, and clustered bioherms.[19] The "Assemsouk Structure", a massive bivalve reef (125 m high, 1.25 km long), preserves growth stages with corals and stromatolites, later faulted into a narrow turbiditic trough and buried by marine marls.[22][23] The depositional environments span from supratidal flats to subtidal zones, with regressive phases marked by barrier islands, followed by anoxic lagoonal shales with coal seams and plant fragments.[19][24][25]
Diapirism
[edit]Modern Farasan Islands within the Red Sea, an analogue of the local Diapirs in the Lower Jurassic. Like their modern counterparts, local diapirs remained as highs respect to surrounding sea, emerging as low tophography Islands.At Talmest-Tazoult, the presence of diapirs (like the "Tazoult salt wall") is remarkable. In the Pliensbachian, this area begins with the deposition of the Jbel Choucht carbonate platform, followed by uplift and salt wall growth causing erosion of the karst and deposition of syn-diapiric breccias, conglomerates, and sandstones (Talmest-Tazoult Formation), and then is invaded from the west by the shallow marine carbonate platform of the Aganane Formation.[26] At this time, a decrease in the growth rate of the diapir is detected compared to the Sinemurian.[27] In fact, with the eastward extension of the Aganane Formation, the Tazoult salt wall registers a major change towards shallower facies, confirming a higher diapir relief and a decrease in water depth towards this area during the Pliensbachian, not excluding a complete stop of diapir activity in this interval.[26] Pliensbachian carbonate platforms likely formed above salt walls, similar to the La Popa Basin (Monterrey). Small-scale karstic cavities filled with meteoric sediments at the platform top further highlight this transition. The Aganane limestones were later overprinted by modified marine fluids during burial, leading to localized dolomitization under reducing conditions. This transformation suggests a late diagenetic phase linked to burial processes, potentially continuing into early shallow burial stages.[28] The diapirs remained as bathymetric highs and emerged islands that allowed the proliferation of Plicatostylidae and other organism colonies during the deposition of the Aganane Fm, as well they created hemipelagic deeper facies between them.[28][29]
Climate
[edit]The Pliensbachian High Atlas trough, situated within a photozoan-dominated carbonate system that formed in a warm, semi-arid to arid climate.[21] Clear, nutrient-poor waters supported organisms such as Plicatostylidae, while ooids, evaporites (gypsum), and calcretes indicate high evaporation and limited freshwater input.[21] The Reef facies featured a nearshore, tropical setting, with dominant Plicatostylidae bivalves and co-existing scleractinian corals, possibly photosymbiotic, suggest warm, clear, oligotrophic conditions.[30]
Sedimentological evidence, including cross-bedding in oolite and clastic shoals, wind-blown red muds, and fine sands points to strong winds as a primary sediment transport mechanism, comparable to modern Shark Bay (Australia) or Persian Gulf settings. Periodic storms influenced sediment redistribution, forming erosional and depositional features in lagoons and tidal flats.[17] The surrounding low-lying hinterland experienced little runoff and was primarily eroded by wind.[17]
Salinity varied across the trough: marginal intertidal zones experienced hypersaline conditions, while central and southern areas maintained near-normal marine salinity during transgressions, as indicated by Ophiomorpha burrows and faunal assemblages.[17] Intertidal zones intermittently supported salt-tolerant plants, leaving organic seams in low-salinity patches. Sedimentary structures like cross-bedding in oolite and clastic shoals, as well as channel directions, were recorded but showed high variability and no consistent trends, likely due to the complex interplay of tidal currents, islands, promontories, mud mounds, shoals, and storm influences in this tidally dominated environment.[17]
Depositional settings
[edit]
The Aganane Formation records a spectrum of shallow marine to coastal depositional environments during the Pliensbachian. The lower and middle parts are dominated by light gray, dolomitic limestones with rhythmic layering, representing tidal-flat–like coastal zones periodically inundated by seawater. Localities such as Ait Athmane and Tizi n'Terghist preserve rhizoliths, tree trunks, red clay paleosols, and pisoids, indicative of pedogenic or freshwater conditions with episodic exposure.[20][31][32] Other sites show biodetritic limestones with emersion features, including dolomitization, mud cracks, plant remains, and dinosaur footprints.[32] Coastal lagoons and supratidal plains—recorded at Assemsouk and Aghbalou N'Kerdous—contain cross-bedded clastic carbonates, microbial structures, and evidence of storm-induced deposition.[21][25][33] Red and white marls, thin dolomite layers, and evaporites suggest alternating exposure and flooding, reminiscent of modern sabkha environments, with tropical conditions comparable to the Andros Island model in the Bahamas.[33]

Further offshore, the platform transitions to more open lagoons dominated by shallow marine conditions. Sediments include mud-rich limestones and dark biodetrital limestones, with marine fauna such as lamellibranchs, gastropods, brachiopods, calcareous algae (Palaeodasycladus, Solenopora, etc.) oncoliths and Foraminifers. Large bivalves like Plicatostylidae, form shell beds shaped by tidal currents.[33][34] Gray, organic-rich sediments indicate low-oxygen, calm-water deposition, with subtidal oncolitic lime wackestones reflecting occasional higher-energy mixing.[17]
In wave-exposed zones, sediments coarsen and reef-related bioclastic limestones appear, with coral colonies and sea urchins forming patch reefs. These reefs protected inner lagoons, allowing finer sediments to accumulate behind them.[33]
Frequent episodic storms caused repeated reworking and lateral displacement of facies, generating asymmetric cycles 2-4 meters thick in shallow lagoon bottoms and behind offshore bars or reef belts.[2] These cycles likely reflect regressive events driven by global sea-level fluctuations and local tectonics, illustrating the dynamic interplay of marine, coastal, and storm-influenced processes.[2]
Paleogeography
[edit]
During the Pliensbachian, the region lay at near-tropical latitudes along the western edge of the "Atlas Gulf," facing the Tethys Sea. Deposition was concentrated along the North Atlas Fault, with up to 700 m of carbonates N, while around 200 m S.[14] This fault line probably marked the northern boundary of a Paleozoic basement peninsula that advanced eastward from the Tichka Massif into the Atlas Trench.[14] Pre-existing subsidence controlled deposition in areas like Haute Moulouya, Itzer Facies, Causse d’Ajdir, Amezraï, and Aït Bouguemez.[2][32][35]
Paleogeographic evolution can be summarized in three stages:
- Lower Pliensbachian ("Carixian"): tidal flats and subtidal platforms on the southern slopes of the Central High Atlas; Plicatostylidae colonized areas along the NE-SW fault separating the Tilougguite trough from its northwest platform.[6][36]
- Middle Pliensbachian ("Carixian–Domerian"): marine expansion along the western High Atlas Basin with rhythmic carbonates in the Tilougguit Trench, turbidites on the SE edge of the Beni-Mellal platform, and subsident lagoons in other sectors.[6] Key faults include the Demnate Fault and North Atlas Fault, while the Telouet Graben remained stable.[36]
- Upper Pliensbachian (Upper Domerian): contrasted platform conditions with emersion at Demnate, paleosols and karst development, lignite deposits along active faults, carbonate and terrigenous sedimentation in small basins like Tamadout and Taquat N’Agrd, and shoals at Jbel Taguendouft. Central zones deepened near Jbel Azourki-Jbel Aroudane, forming the early structural framework of the High Atlas basin.[36]
Foraminifera
[edit]Color key
|
Notes Uncertain or tentative taxa are in small text; |
Local Foraminifers have been the major reference to establish the local different environmental settings, as its distribution is clearly based on cyclic sedimentary evolution: the base banks "Term A" represents a shallow subtidal setting with rich thanatocoenosis of Siphovalvulina, Mayncina or Orbitopsella, associated with an intensely bioturbated environment, analogous to present Bahamas, Florida or Persian Gulf.[33] In the Aganane type section limestone beds (biopelmicrite) rich in Orbilopsella, Haurania or Pseudopfenderina could be interpreted as brought by tidal currents covering the supratidal zone. In "Term B" a thanatocoenosis of monospecific Foraminifera with Mayncina termieri, Pseudopfenderina or Lituosepta compressa are common, interpreted as allochthonous, resulting from sorting in an intertidal environment higher than supratidal, under or alternated with the supratidal laminations and the storm breccias, as well in rarer cases covering (aeolian origin?) surface of the supratidal coastal plain.[33] The Aganane Foraminifera in Terms "D" and "E" underwent significant evolutionary and environmental changes.[37] During D, the foraminiferal population was dominated by Planisepta, a smaller morphovariant of Lituosepta, which persisted after the decline of larger orbitopsellids like Orbitopsella due to internal biological factors and mechanical instability related to their large size. The population remained stable until the Middle Domerian anoxic crisis, which triggered a microfaunal turnover. E saw the emergence of smaller, simpler foraminifera such as Haurania gracilis and Paleocyclammina liasica, adapted to eutrophic lagoon conditions.[37]
Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Amijiella[38] |
|
|
Isolated Tests/Shells | A foraminifer of the family Hauraniidae | |
Ammobaculites[5] |
|
|
Isolated Tests/Shells | A foraminifer of the Ammomarginulininae family. | |
Dentalina[31] |
|
|
Isolated Tests/Shells | A foraminifer of the Nodosariinae family. | |
Eariandia[10] |
|
|
Isolated Tests/Shells | A foraminifer of the family Earlandiidae. | |
Eggerella[12] |
|
|
Isolated Tests/Shells | A foraminifer of the Eggerellidae family. | |
|
|
Isolated Tests/Shells |
A foraminifer of the Everticyclamminidae family. |
||
Glomospira[10][40] |
|
|
Isolated Tests/Shells | A foraminifer of the family Ammodiscidae. | |
Glomospirella[40] |
|
|
Isolated Tests/Shells | A foraminifer of the family Ammovertellininae. | |
Haurania[10][12][37] |
|
|
Isolated Tests/Shells | A foraminifer of the family Hauraniidae | |
|
|
Isolated Tests/Shells |
A foraminifer of the Mesoendothyridae family. |
||
Meandrospira[12] |
|
|
Isolated Tests/Shells | A foraminifer of the Cornuspiridae family. | |
|
|
Isolated Tests/Shells |
A foraminifer of the Mesoendothyridae family. |
||
Nodosaria[40] |
|
|
Isolated Tests/Shells | A foraminifer of the family Nodosariinae. | |
Ophtalmidium[40] |
|
|
Isolated Tests/Shells | A foraminifer of the family Ophthalmidiidae. | |
|
|
Isolated Tests/Shells |
A foraminifer of the Mesoendothyridae family. |
||
|
|
Isolated Tests/Shells | A foraminifer of the Mesoendothyridae family. | ||
Planisepta[40][38] |
|
|
Isolated Tests/Shells | A foraminifer of the Mesoendothyridae family. | |
Planiinvoluta[12] |
|
|
Isolated Tests/Shells | A foraminifer of the Cornuspiridae family. | |
|
|
Isolated Tests/Shells |
A foraminifer of the Pfenderinidae family. |
||
|
|
Isolated Tests/Shells |
A foraminifer of the Pfenderinidae family. |
||
|
|
Isolated Tests/Shells |
A foraminifer of the Pfenderinidae family. |
Invertebrates
[edit]Ichnofossils
[edit]Genus | Species | Location | Material | Made by | Images |
---|---|---|---|---|---|
|
|
Borrowing Traces |
|
![]() | |
Asterosoma[42] |
|
Bulb-like swelling burrows |
|
||
|
Tubular Fodinichnia |
|
|||
|
Tubular Fodinichnia |
|
![]() | ||
Cruziana[42] |
|
Ribbon-like furrows | |||
Gastrochaenolites[42] |
|
clavate-shaped to flask-shaped tubes |
|
![]() | |
Glossifungites[42] |
|
Infilled abandoned burrows | |||
Ophiomorpha[42] |
|
Tubular Fodinichnia |
|
![]() | |
|
Tubular Fodinichnia |
|
|||
|
Cylindrical to subcylindrical burrows |
|
![]() | ||
|
Tubular Fodinichnia |
|
![]() | ||
Teichichnus[42] |
|
Vertical to oblique burrows |
|
||
|
Dwelling traces |
|
![]() |
Hydrozoa
[edit]Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Spongiomorpha[18] |
|
|
Imprints | A hydrozoan, member of the family Spongiomorphidae |
Anthozoa
[edit]Genus | Species | Stratigraphic Position | Material | Notes | Images |
---|---|---|---|---|---|
Actinastreidae[30] | Indeterminate |
|
Colonial Imprints | Thamnasterioid corals | ![]() |
|
|
Imprints |
A solitary coral of the family Stylinidae. |
||
|
|
Imprints |
A solitary coral of the family Zardinophyllidae. |
||
|
|
Colonial Imprints |
A coral of the family Archaeosmiliidae. |
||
Eocomoseris[30] |
|
|
Colonial Imprints | A thamnasterioid coral of the family Archaeosmiliidae. | |
Icaunhelia[30] |
|
|
Imprints | A solitary coral of the family Archaeosmiliidae | |
|
|
Imprints |
A coral of the family Oppelismiliidae. |
||
Paleomillepora[30] |
|
|
Colonial Imprints | A plocoid coral of the family Spongiocoenia | |
|
|
Colonial Imprints |
A coral of the family Stylophyllidae. |
||
|
|
Colonial Imprints |
A coral of the family Dermosmiliidae. |
||
|
|
Colonial Imprints |
A coral of the family Latomeandridae. |
||
Proleptophyllia?[30] |
|
|
Imprints | A solitary coral of the family Dermosmiliidae | |
Reimaniphyllidae[30] | Indeterminate |
|
Imprints | Solitary corals | |
|
|
Colonial Imprints |
A coral of the family Reimaniphylliidae. It belongs to the otherwise common Triassic genus Retiophyllia. |
||
Stylophyllidae[30] | Indeterminate |
|
Colonial Imprints | Phaceloid corals | ![]() |
|
|
Colonial Imprints |
A thamnasterioid coral of the family Thamnasteriidae. |
![]() |
Porifera
[edit]Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Caunopora[18] |
|
|
Imprints | Incertade Sedis, maybe a symbiotic Coral-Sponge, and likely Stromatoporoidea | |
|
|
Colonial Imprints |
An Axinellidan demosponge of the family Cladocoropsidae. |
![]() | |
Stylothalamia[45] |
|
|
Imprints | A Dictyoceratidan demosponge of the family Verticillitidae |
Brachiopoda
[edit]Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Aulacothyris[35] |
|
|
Isolated Shells | A Brachiopodan of the family Zeilleriidae | |
|
|
Isolated Shells |
A Brachiopodan of the family Cirpinae. It was originally identified as part of the genus Rhynchonella |
||
Gibbirhynchia[5][47] |
|
|
Isolated Shells | A Brachiopodan member of the family Tetrarhynchiidae | |
Grandirhynchia[48] |
|
|
Isolated Shells | A Brachiopodan member of the family Tetrarhynchiidae | |
|
Isolated Shells |
A Brachiopodan of the family Zeilleriidae |
|||
Liospiriferina[5][47] |
|
|
Isolated Shells | A Brachiopodan of the family Spiriferinidae | |
Lobothyris[47][51] |
|
|
Isolated Shells | A Brachiopodan of the family Lobothyrididae | ![]() |
Parathyridina[47][51] |
|
|
Isolated Shells | A Brachiopodan of the family Zeilleriidae. A taxon living on the inner carbonate platforms rarely communicating with the open sea. | |
|
Isolated Shells |
A Brachiopodan of the family Spiriferinidae |
|||
Sulcirostra[51] |
|
|
Isolated Shells | A Brachiopodan of the family Dimerellidae | |
Tetrarhynchia[51] |
|
|
Isolated Shells | A Brachiopodan member of the family Tetrarhynchiidae | |
"Terebratula"[18][51] |
|
|
Isolated Shells | A Brachiopodan member of the family Terebratulidae | |
Zeilleria[12][51] |
|
|
Isolated Shells | A Brachiopodan of the family Zeilleriidae |
Bivalves
[edit]Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Isolated Shells |
A saltwater bivalve of the family Mytilidae. |
||
|
|
Isolated Shells |
A saltwater bivalve of the family Plicatostylidae. Its accumulations generally cover megalodontid coquinas. |
![]() | |
|
|
Isolated Shells |
A saltwater/brackish bivalve of the family Neomiodontidae. This genus is considered an opportunistic suspension feeder of shallow infauna, and the marker genus for brackish environments.[53] |
||
|
|
Isolated Shells |
A saltwater bivalve of the family Lucinidae. |
![]() | |
|
|
Isolated Shells |
A saltwater bivalve of the family Bakevelliidae. |
||
|
|
Isolated Shells |
A saltwater bivalve of the family Plicatostylidae. |
![]() | |
Gryphaea[20][31] |
|
|
Isolated Shells | A saltwater/brackish bivalve of the family Gryphaeidae | |
|
|
Isolated Shells |
A saltwater bivalve of the family Gryphaeidae. This genus develops a noted material oyster biostrome at Aït Athmane, where a discontinuous, patchy layer is formed, developed under submarine lithification and a relative enrichment in terrigenous matter.[31] |
![]() | |
|
Isolated Shells |
A saltwater bivalve of the family Plicatostylidae. This genus was founded to be a bivalve with a juvenile byssate stage that developed different lifestyles in adulthood depending on the density of individuals and the firmness of the bottom. |
![]() | ||
|
|
Isolated Shells |
A saltwater/brackish bivalve of the family Lucinidae. Linked with intertidal settings |
![]() | |
Megalodon?[24] |
|
|
Isolated Shells | A saltwater bivalve of the family Megalodontidae | ![]() |
Modiolus[18] |
|
|
Isolated Shells | A saltwater bivalve of the family Mytilidae | ![]() |
Nanogyra[20][31] |
|
|
Isolated Shells | A saltwater/brackish bivalve of the family Gryphaeidae | |
|
|
Isolated Shells |
A saltwater/brackish bivalve of the family Astartidae. Is considered a genus that evolved from shallow burrowing ancestors, secondarily becoming an edge-lying semi-fauna adapted to photosymbiosis.[54] |
||
|
|
Isolated Shells |
A saltwater bivalve of the family Plicatostylidae. |
![]() | |
|
|
Isolated Shells |
A saltwater bivalve of the family Pachyrismatidae |
||
|
|
Isolated Shells |
A saltwater bivalve of the family Pectinidae |
![]() | |
"Perna"[18] |
|
|
Isolated shells | A saltwater bivalve of the family Pteriidae | ![]() |
Phacoides[18] |
|
|
Isolated shells | A saltwater/brackish bivalve of the family Lucinidae. | ![]() |
|
|
Isolated Shells |
A saltwater bivalve of the family Pholadomyidae |
| |
Plagiostoma[20][31] |
|
|
Isolated Shells | A saltwater/brackish bivalve of the family Limidae | |
|
|
Isolated Shells |
A saltwater bivalve of the family Pachyrismatidae |
||
Pseudopachymytilus[20] |
|
|
Isolated Shells | A saltwater bivalve of the family Myalinidae. |
Gastropoda
[edit]Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Boehmia[18] |
|
|
Isolated shells | A saltwater gastropod of the family Acteonidae | |
Cerithiella[18] |
|
|
Isolated shells | A saltwater gastropod of the family Newtoniellidae | ![]() |
Ceritella[47] |
|
|
Isolated Shells | A saltwater gastropod of the family Ceritellidae | |
Coelostylina[18] |
|
|
Isolated shells | A saltwater gastropod of the family Coelostylinidae | |
Encyclomphalus[18] |
|
|
Isolated Shells | A saltwater gastropod of the family Pleurotomariidae | |
Fibulella[18] |
|
|
Isolated shells | A saltwater gastropod of the family Ceritellidae | |
|
|
Isolated Shells |
A saltwater gastropod of the family Nerineidae. |
||
Neritina[18] |
|
|
Isolated shells | A saltwater gastropod of the family Neritidae | |
Procerithium[18] |
|
|
Isolated Shells | A saltwater gastropod of the family Procerithiidae | |
Pseudomelania[18] |
|
|
Isolated shells | A saltwater gastropod of the family Pseudomelaniidae | |
|
|
Isolated Shells |
A saltwater gastropod of the family Nerineidae |
||
|
|
Isolated Shells |
A saltwater gastropod of the family Nerineidae. |
![]() |
Ammonites
[edit]Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Isolated Shells |
An ammonite of the family Hildoceratidae. Arieticeras cf. algovianum is indicative of the Middle Domerian (Upper Pliensbachian) in the upper zone |
![]() | |
|
|
Isolated Shells |
An ammonite of the family Hildoceratidae |
||
Fuciniceras[8] |
|
|
Isolated Shells | An ammonite of the family Hildoceratidae | |
Galaticeras[8] |
|
|
Isolated Shells | An ammonite of the family Lytoceratidae | |
Lioceratoides[8] |
|
|
Isolated Shells | An ammonite of the family Hildoceratidae | |
Protogrammoceras[8] |
|
|
Isolated Shells | An ammonite of the family Hildoceratidae | |
|
|
Isolated Shells |
An ammonite of the family Amaltheinae |
![]() | |
Reynesoceras[8] |
|
|
Isolated Shells | An ammonite of the family Dactylioceratidae |
Annelida
[edit]Genus | Species | Stratigraphic position | Material | Habitat | Notes | Images |
---|---|---|---|---|---|---|
Indeterminate |
|
Isolated or accumulated tubes |
Marine or Lagoonal |
A sessile Annelid of the family Serpulidae. |
![]() |
Decapoda
[edit]Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Favreina[10][33] |
|
|
Coprolites | Decapodan fossil coprolites, assigned to the ichnofamily Favreinidae. Referred to Axiidea-like burrowing crustaceans | ![]() |
|
|
Coprolites |
Echinodermata
[edit]Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Atlasaster[35] |
|
|
Isolated Individuals | An echinoid, member of the group Irregularia | |
Firmacidaris[18] |
|
|
Isolated Individuals | An echinoid, Incertade Sedis | |
Pentacrinites[18] |
|
|
Columnals | A Crinoid of the family Pentacrinidae | ![]() |
Pseudocidaris[18] |
|
|
Isolated Individuals | An echinoid, member of the family Hemicidaridae | ![]() |
Dinosauria
[edit]Theropoda
[edit]Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Footprints |
Incertae sedis within Neotheropoda, maybe ceratosaur tracks. Includes some large tracks.[59][58] |
![]() | |
Indeterminate |
|
Footprints |
incertae sedis within Theropoda. 64 footprints of medium to large (30–55 cm) theropods referred as "Morphotype 3", some with resemblance to Allosauroid pes (Megalosauripus? ispp.).[59] |
![]() | |
|
|
Footprints |
Member of the ichnofamily Grallatoridae, incertae sedis within Theropoda. Up to 96 tracks of small theropods, referred originally to "Morphotype 1", and usually attributed to dinosaurs similar to Coelophysidae and Dilophosaurus. Includes didactyl, tridactyl and tetradactyl tracks, as well as pathologic trackways with evidence of limping.[1] Has been suggested to be tracks from tridactyl taxa under different conditions.[61] |
![]() | |
|
Footprints |
Type member of the ichnofamily Eubrontidae, incertae sedis inside Theropoda. Eubrontes is usually related to the genus Dilophosaurus, representing basal Neotheropods. The local record includes up to 208 tracks, referred as "Morphotype 2".[56] |
![]() | ||
Indeterminate |
Footprints |
Incertae sedis. |
Sauropodomorpha
[edit]Several tracks, classified under a "Morphotype 3", were originally attributed to Thyreophoran (Stegosaur?) dinosaurs, even recently suggested to come from the ichnogenera Deltapodus?, Luluichnus? and Tetrapodosaurus?.[65][67] It must be noted that this tracks are badly preserved and unusually large for an armoured dinosaur of early jurassic age (some up to 60 cm), and so likely are misidentified Sauropodomorph tracks.[58]
Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Footprints |
Incertae sedis within Sauropoda. Includes traces with pes similar to Diplodocoidea, but also others that resemble basal sauropods.[68][69] |
![]() | |
|
|
Footprints |
Incertae sedis within Sauropodomorpha. Described as the "Morphotype 1" Includes traces with pes similar to those of basal quadrupedal forms like Blikanasaurus or Melanorosauridae.[69] Referred to quadrupedal taxa such as Gongxianosaurus.[58] Alternatively, the tracks, or some of them, can belong to the ichnogenus Lavinipes.[71] |
||
|
|
Footprints |
Type member of the ichnofamily Otozoidae, incertae sedis within Sauropodomorpha. Cuadrupedal or semibipedal, includes a gigantic 84 or 75 cm track that represents the largest Otozoum ever described in the literature.[72][73] |
![]() | |
|
|
Footprints |
Typical member of the ichnofamily Parabrontopodidae, incertae sedis within Sauropoda. Includes tracks with pes similar to those of Vulcanodon, Rhoetosaurus, Barapasaurus or Eusauropoda.[69] Tracks referred to the stegosaurian ichnogenus Deltapodus? locally are actually of sauropod origin, likely "Parabrontopodid", probably a new ichnogenus.[58][65] |
![]() | |
|
|
Footprints |
Incertae sedis within Sauropodomorpha. Referred to semibipedal sauropodomorphs, like Kholumolumo.[74] |
![]() | |
Indeterminate |
|
Footprints |
Incertae sedis. |
||
Indeterminate |
|
Footprints |
Incertae sedis. |
Ornithischia
[edit]Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Footprints |
Incertae sedis within Thyreophora. While the tracks can resemble Iguanodon-alike pes, biomorphic-morphometric characters can only be associated with thyreophorans, what would support the bipedalism theory for this taxa.[75] |
![]() |
Rhodophyta
[edit]Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Permocalculus[12] |
|
|
Calcareous Imprints | A Red alga of the Gymnocodiaceae family. | |
Pycnoporidium[10] |
|
|
Calcareous Imprints | A Red Alga of the family Solenoporaceae | |
Solenopora[16][76] |
|
|
Calcareous Imprints | A Red Alga of the family Solenoporaceae |
Viridiplantae
[edit]Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Acicularia[12] |
|
|
Calcareous Imprints | A Green alga of the Dasycladaceae family. | |
Agathoxylon[18] |
|
|
Fossil Wood | Conifer Wood of the family Araucariaceae | ![]() |
Boueina[12][33][76] |
|
|
Calcareous Imprints | A Green alga of the Halimedaceae or Udoteaceae family. | ![]() |
Cayeuxia[39][76] |
|
|
Calcareous Imprints | A Green alga of the Halimedaceae or Udoteaceae family. | |
Classopollis[77] |
|
|
Pollen | Conifer Pollen, type of the family Hirmeriellaceae | |
Cupressacites[77] |
|
|
Pollen | Conifer Pollen of the family Cupressaceae(?) | ![]() |
Cylindroporella[12] |
|
|
Calcareous Imprints | A Green alga of the Dasycladaceae family. | |
Diadocupressacites[77] |
|
|
Pollen | Conifer Pollen of the family Cupressaceae(?) | |
Fanesella[31] |
|
|
Calcareous Imprints | A Green alga of the Dasycladaceae family. | |
Paleodasycladus[12][39][76] |
|
|
Calcareous Imprints | A Green alga of the Dasycladaceae family. | |
Pseudolithocodium[33] |
|
|
Calcareous Imprints | A Green alga, likely a member of the Ulotrichales group. | |
Sestrosphera[39][76] |
|
|
Calcareous Imprints | A Green alga of the Triploporellaceae family. | |
Terquemella[5] |
|
|
Calcareous Imprints | A Green alga of the Bornetellaceae family. | |
Thaumatoporella[12][39][76] |
|
|
Calcareous Imprints | A Green alga of the Thaumatoporellales group |
Photo Gallery
[edit]-
Desiccation cracks in a dolomitized limestone bench, emersive cycle top of the Lagoon
-
Ammonites and belemnites displaced on the supratidal plain ("teepee") by a storm wave or a tidal current
-
Storm breach at the top of a metric regressive sequence
-
Vadose pisoliths and "birdseyes" in coastal carbonate sand, emergent; outer shelf
-
Aerial, supratidal (vadose) diagenesis in a carbonate sand with foraminifera displaced by tidal currents and storm waves on the shelf
-
Thin layer: calcretes (calcareous crusts) reworked in a gravelly coastal sediment, partly dolomitized
-
Stalactite cement at the top of a "keystone vug" typical of diagenesis in a vadose environment, at the top of an emersive cycle (L=0.3 mm)
-
Calcretes (calcareous crust) and "birdseyes" in a gravelly coastal sediment
-
Diagenetic structure in "teepee" on the supratidal plain, formed by the increase in volume of the sediment following the crystallization of carbonates (dolomite)
-
Hurricane Breccia, with dolomitic matrix. Top of emersive cycle.
See also
[edit]References
[edit]- ^ a b c d Ishigaki, Shinobu; Lockley, Martin G. (March 2010). "Didactyl, tridactyl and tetradactyl theropod trackways from the Lower Jurassic of Morocco: evidence of limping, labouring and other irregular gaits". Historical Biology. 22 (1–3): 100–108. Bibcode:2010HBio...22..100I. doi:10.1080/08912961003789867.
- ^ a b c d e Hauptmann, Manfred (1990). "Untersuchungen zur Mikrofazies, Stratigraphie und Paläogeographie jurassischer Karbonat-Gesteine im Atlas-System Zentral-Marokkos" [Investigations into the microfacies, stratigraphy and paleogeography of Jurassic carbonate rocks in the Atlas system of central Morocco]. Berliner geowissenschaftliche Abhandlungen. Reihe A, Geologie und Paläontologie (in German). 119. Selbstverlag Fachbereich Geowissenschaften, FU Berlin. doi:10.23689/fidgeo-6546.[page needed]
- ^ Danisch, Jan; Kabiri, Lahcen; Nutz, Alexis; Bodin, Stéphane (May 2019). "Chemostratigraphy of Late Sinemurian – Early Pliensbachian shallow-to deep-water deposits of the Central High Atlas Basin: Paleoenvironmental implications". Journal of African Earth Sciences. 153: 239–249. Bibcode:2019JAfES.153..239D. doi:10.1016/j.jafrearsci.2019.03.003.
- ^ Merino-Tomé, Óscar; Porta, Giovanna Della; Kenter, Jeroen A. M.; Verwer, Klaas; Harris, Paul (Mitch); Adams, Erwin W.; Playton, Ted; Corrochano, Diego (January 2012). "Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): influence of tectonics, eustacy and carbonate production". Sedimentology. 59 (1): 118–155. Bibcode:2012Sedim..59..118M. doi:10.1111/j.1365-3091.2011.01232.x.
- ^ a b c d e f g Benshili, Khadija (1989). "Lias - Dogger du Moyen-Atlas plissé (Maroc). Sédimentologie, biostratigraphie et évolution paléogéographique". Travaux et Documents des Laboratoires de Géologie de Lyon. 106 (1): 3–285.
- ^ a b c d Ibouh, H.; El Bchari, F.; Bouabdelli, M.; Souhel, A.; Youbi, N. (30 April 2001). "L'accident tizal-azourki haut atlas central du maroc: déformations synsedimentaires liasiques en extension et conséquences du serrage atlasique". Estudios Geológicos. 57 (1–2): 15–30. doi:10.3989/egeol.01571-2124.
- ^ a b POISSON, A; HADRI, M.; MILHI, A.; JULIEN, M.; ANDRIEUX, J. (1998). "The central High-Atlas (Morocco). Litho- and chrono-stratigraphic correlations during Jurassic times between Tinjdad and Tounfite. Origin of subsidence". The Central High-Atlas (Morocco). Litho- and Chrono-stratigraphic Correlations During Jurassic Times Between Tinjdad and Tounfite. Origin of Subsidence. 179: 237–256. ISSN 1243-4442.
- ^ a b c d e f g h i Dubar, G.; Mouterde, R. (1978). "Les formations à ammonites du Lias Moyen dans Ie Haut Atlas du Midelt et du Tadla" (PDF). Notes & M. Servo Geo/. Maroc. 274 (4): 77.
- ^ a b Jossen, J.A. (1988). "Carte geologique du Maroc au 11100 000: Feuille Zawyat Ahancal". Notes & M. Servo Geo/. Maroc. 335 (4): 23–31.
- ^ a b c d e f g h i j k l m n o p Jenny, J. (1988). "Carte géologique du Maroc au 1/100 000: feuille Azilal (Haut Atlas central). Mémoire explicatif". Notes et Mémoires du Service géologique. 378 (1): 1–122. Retrieved 25 January 2022.
- ^ a b Milhi, Abdellah (1992). Stratigraphie, Fazies und Paläogeographie des Jura am Südrand des zentralen Hohen Atlas (Marokko). Selbstverlag Fachbereich Geowissenschaften, FU Berlin. OCLC 763029903.
- ^ a b c d e f g h i j k l m n o p q r Bouchouata, Abdelaziz (1994-01-01). La ride de Talmest-Tazoult (haut Atlas central, Maroc) : Lithostratigraphie, biostratigraphie et relations tectonique-sédimentation au cours du Jurassique (These de doctorat thesis). Toulouse 3.
- ^ Michard, A. (March 2011). "Nouveaux guides géologiques et miniers du Maroc/New Geological and Mining Guidebooks of Morocco, volume 7: Haut Atlas occidental, Haut Atlas central nord-ouest". Notes & M. Servo Geo/. Maroc. 562 (1–3): 70–76. Retrieved 1 April 2022.
- ^ a b c d e f Lee, C. W.; Burgess, C. J. (1978). "Sedimentation and tectonic controls in the early Jurassic central High Atlas trough, Morocco". Geological Society of America Bulletin. 89 (8): 1199–1204. Bibcode:1978GSAB...89.1199L. doi:10.1130/0016-7606(1978)89<1199:SATCIT>2.0.CO;2.
- ^ Burgess, C. J. (1979). "The development of a Lower Jurassic carbonate tidal flat, central High Atlas, Morocco; 2, Diagenetic history". Journal of Sedimentary Research. 49 (2): 413–427. Retrieved 20 April 2023.
- ^ a b c d e f Rolley, J. P. (1973). "Etude géologique de l'Atlas d'Afourer-Haut-Atlas central-Maroc" (PDF). (Doctoral dissertation, Université de Grenoble).
- ^ a b c d e f g h Burgess, C. J.; Lee, C. W. (1978). "The development of a Lower Jurassic carbonate tidal flat, central High Atlas, Morocco; 1, Sedimentary history". Journal of Sedimentary Research. 48 (3): 777–793. Retrieved 20 April 2023.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x Lee, C. W. (1976). "Facies and Faunistic Variation in the Middle Lias (Domerian) of the Central High Atlas Mountains, Morocco". Thesis University College of Swansea. 1 (1): 331.
- ^ a b c d e f g h i j k l m n o p q r s t u v Lee, C.W. (August 1983). "Bivalve mounds and reefs of the Central High Atlas, Morocco". Palaeogeography, Palaeoclimatology, Palaeoecology. 43 (1–2): 153–168. Bibcode:1983PPP....43..153L. doi:10.1016/0031-0182(83)90052-4.
- ^ a b c d e f g h i j k l m n o p Brame, Hannah-Maria R.; Martindale, Rowan C.; Ettinger, Nicholas P.; Debeljak, Irena; Vasseur, Raphaël; Lathuilière, Bernard; Kabiri, Lahcen; Bodin, Stéphane (January 2019). "Stratigraphic distribution and paleoecological significance of Early Jurassic (Pliensbachian-Toarcian) lithiotid-coral reefal deposits from the Central High Atlas of Morocco". Palaeogeography, Palaeoclimatology, Palaeoecology. 514: 813–837. Bibcode:2019PPP...514..813B. doi:10.1016/j.palaeo.2018.09.001.
- ^ a b c d e f g h i j k Krencker, Francois-Nicolas; Fantasia, Alicia; Danisch, Jan; Martindale, Rowan; Kabiri, Lahcen; El Ouali, Mohamed; Bodin, Stéphane (September 2020). "Two-phased collapse of the shallow-water carbonate factory during the late Pliensbachian–Toarcian driven by changing climate and enhanced continental weathering in the Northwestern Gondwana Margin". Earth-Science Reviews. 208: 103254. Bibcode:2020ESRv..20803254K. doi:10.1016/j.earscirev.2020.103254.
- ^ Fraser, Nicole Marie (2002). Early Jurassic reef eclipse: Paleoecology and sclerochronology of the "Lithiotis" facies bivalves (Thesis). OCLC 54394943. ProQuest 305518532.[page needed]
- ^ Gharib, Abdelhaq; Souhel, Abdellatif; Canerot, J.; El Bchari, F. (2001). "New interpretation of the so called "Assemsouk mud-mound " (Central High Atlas -Morocco)". Géologie Méditerranéenne. 28 (1): 85–87. doi:10.3406/geolm.2001.1695.
- ^ a b c d e f g h i j k l m n o Fraser, N. M.; Bottjer, D. J.; Fischer, A. G. (1 February 2004). "Dissecting 'Lithiotis' Bivalves: Implications for the Early Jurassic Reef Eclipse". PALAIOS. 19 (1): 51–67. Bibcode:2004Palai..19...51F. doi:10.1669/0883-1351(2004)019<0051:DLBIFT>2.0.CO;2.
- ^ a b Krobicki, M. (2014). "Early Jurassic Lithotis-facies bivalves in reef-type buildup in Moroccan High. Atlas (Jebel Azourki, Assemsouk) – a case study". 7th International Meeting on Taphonomy and Fossilization.
- ^ a b Martín-Martín, J. D.; Vergés, J.; Saura, E.; Moragas, M.; Messager, G.; Baqués, V.; Razin, P.; Grélaud, C.; Malaval, M.; Joussiaume, R.; Casciello, E.; Cruz-Orosa, I.; Hunt, D. W. (January 2017). "Diapiric growth within an Early Jurassic rift basin: The Tazoult salt wall (central High Atlas, Morocco): Diapiric Growth of the Tazoult Salt Wall". Tectonics. 36 (1): 2–32. doi:10.1002/2016TC004300. hdl:10261/142474.
- ^ Moragas, Mar; Vergés, Jaume; Saura, Eduard; Martín-Martín, Juan-Diego; Messager, Grégoire; Merino-Tomé, Óscar; Suárez-Ruiz, Isabel; Razin, Philippe; Grélaud, Carine; Malaval, Manon; Joussiaume, Rémi; Hunt, David William (February 2018). "Jurassic rifting to post-rift subsidence analysis in the Central High Atlas and its relation to salt diapirism". Basin Research. 30 (S1): 336–362. Bibcode:2018BasR...30..336M. doi:10.1111/bre.12223. hdl:10261/142318.
- ^ a b Moragas, Mar; Baqués, Vinyet; Travé, Anna; Martín-Martín, Juan Diego; Saura, Eduard; Messager, Gregoire; Hunt, David; Vergés, Jaume (June 2020). "Diagenetic evolution of lower Jurassic platform carbonates flanking the Tazoult salt wall (Central High Atlas, Morocco)". Basin Research. 32 (3): 546–566. Bibcode:2020BasR...32..546M. doi:10.1111/bre.12382. hdl:10261/186591.
- ^ Eduard, Saura; Juan Diego, Martín-Martín; Jaume, Vergés; Mar, Moragas; Philippe, Razin; Carine, Grélaud; Gregoire, Messager; David, Hunt (June 2025). "Shoulder to shoulder architecture of a salt-related rift basin at the onset of continental break-up: The Central High Atlas Jurassic diapiric province (Morocco)". Marine and Petroleum Geology. 176: 107338. Bibcode:2025MarPG.17607338E. doi:10.1016/j.marpetgeo.2025.107338.
- ^ a b c d e f g h i Stone, Travis; Martindale, Rowan; Bodin, Stéphane; Lathuilière, Bernard; Krencker, François-Nicolas; Fonville, Tanner; Kabiri, Lahcen (April 2025). "Ecological differences in upper Pliensbachian (Early Jurassic) reef communities determined by environmental conditions in carbonate settings". Journal of African Earth Sciences. 224: 105547. Bibcode:2025JAfES.22405547S. doi:10.1016/j.jafrearsci.2025.105547.
- ^ a b c d e f g h i j k l Wilmsen, M.; F., Neuweiler (2008). "Biosedimentology of the Early Jurassic post-extinction carbonate depositional system, central High Atlas rift basin, Morocco". Sedimentology. 54 (4): 773–807. Bibcode:2008Sedim..55..773W. doi:10.1111/j.1365-3091.2007.00921.x.
- ^ a b c El Bchari, F.; Souhel, A. (2008). "Sequence tratigraphy and geodynamic evolution of the Jurassic (Sinemurian terminal-Aalenian) of Ait Bou Guemmez (Central High Atlas, Morocco)". Estudios Geológicos. 64 (2): 151–160. doi:10.3989/egeol.08642.028. Retrieved 28 March 2022.
- ^ a b c d e f g h i j k l m n o p q r s Septfontaine, M. (1985). "Environnements de dépôt et foraminifères (Lituolidae) de la plate-forme carbonatée du Lias moyen au Maroc". Revue de Micropaléontologie. 28 (4): 265–289. Retrieved 3 January 2022..
- ^ Milhi, A.; Ettaki, M.; Chellai, E.H.; Hadri, M. (2002). "The lithostratigraphic formations of moroccan jurassic central High-Atlas: Interelationships and paleogeographic reconstitution". Revue de Paleobiologie. 21 (4): 241–256..
- ^ a b c d e f g h i j k Saadi, Z.; Fedan, B.; Laadila, M.; Kaoukaya, A. (2003). "Les tidalites liasiques de la Haute Moulouya et du Moyen Atlas méridional (Maroc): dynamique sédimentaire et contexte paléogéographique" (PDF). Bulletin de l'Institut Scientifique, Rabat, section Sciences de la Terre. 25 (2): 55–71.
- ^ a b c Souhel, A. (1996). "The Mesozoic in the High Atlas of Beni-Mellal (Morocco). Stratigraphy, sedimentology and geodynamic evolution" (PDF). Strata: Series 2, Memoirs. 27 (6): 1–227. Retrieved 12 May 2022..
- ^ a b c d Septfontaine, Michel (2020). "Steps of Morphogenesis and Iterative Evolution of Imperforate Larger Foraminifera in Shallow Carbonate Shelves During Mesozoic Times: Possible Relations to Symbiotic and Abiotic Factors". Morphogenesis, Environmental Stress and Reverse Evolution. pp. 129–173. doi:10.1007/978-3-030-47279-5_8. ISBN 978-3-030-47278-8.
- ^ a b c d e f g Septfontaine, M. (1988). "Vers une classification évolutive des Lituolidés (Foraminifères) jurassiques en milieu de plate-forme carbonatée". Revue de paléobiologie. 86 (2): 229–256.
- ^ a b c d e f g h i j k l m n o p q r s Septfontaine, H. M. R. (1984). "Biozonation (a l'aide des foraminifères imperfores) de la plate-forme interne carbonatée liasique du Haut Atlas (Maroc)". Revue de Micropaléontologie. 27 (3): 209–229. INIST 8990464.
- ^ a b c d e f g h Fonville, Tanner; Martindale, Rowan C.; Stone, Travis N.; Septfontaine, Michel; Bodin, StéPhane; Krencker, FrançOis-Nicolas; Kabiri, Lahcen (31 August 2024). "Early Jurassic Benthic Foraminiferal Ecology From The Central High Atlas Mountains, Morocco". PALAIOS. 39 (8): 277–299. Bibcode:2024Palai..39..277F. doi:10.2110/palo.2023.026.
- ^ Fugagnoli, A. (April 2000). "First Record Of Everticyclammina Redmond 1964 (E. Praevirguliana N. Sp.; Foraminifera) From The Early Jurassic Of The Venetian Prealps (Calcari Grigi, Trento Platform, Northern Italy)". The Journal of Foraminiferal Research. 30 (2): 126–134. Bibcode:2000JForR..30..126F. doi:10.2113/0300126.
- ^ a b c d e f Sarih, S.; Quiquerez, A.; Allemand, P.; Garcia, J. P.; El Hariri, K. (September 2018). "Along strike behavior of the Tizi n' Firest fault during the Lower Jurassic rifting (Central High Atlas Carbonate basin, Morocco)". International Journal of Earth Sciences. 107 (6): 2209–2231. Bibcode:2018IJEaS.107.2209S. doi:10.1007/s00531-018-1596-8.
- ^ a b Vasseur, Raphaël; Lathuilière, Bernard (23 November 2021). "Pliensbachian corals from the Western Tethys". Geodiversitas. 43 (22). doi:10.5252/geodiversitas2021v43a22.
- ^ Beauvais, L. (1980). "Les Calcarea (Spongiaires) du Lias du Maroc". Annales de Paléontologie (Invertébrés). 66 (2): 21–41.
- ^ Frankfurt, Rolf Schroeder (June 1984). "Revision von Stylothalamia columnaris Le Maitre 1935 (Sphinctozoa, Porifera) aus dem Lias von Marokko". Paläontologische Zeitschrift. 58 (1–2): 33–39. Bibcode:1984PalZ...58...33F. doi:10.1007/BF02990325.
- ^ a b c Dubar, G. (1942). "Études paléontologiques sur le Lias du Maroc. Brachiopodes. Térébratules et Zeilléries multiplissées". Notes et Mémoires du Service Géologique du Maroc. 57 (1): 1–103..
- ^ a b c d e Elmi, Serge; Alméras, Yves; Benshili, Khadija (1989). "Influence de l'évolution paléogéographique sur les peuplements au cours du Lias dans le Moyen-Atlas Marocain". Sciences Géologiques, bulletins et mémoires. 83 (1): 115–131.
- ^ a b c Rousselle, L. (1969). "Térébratules pliciligates du Lias supérieur du Haut-Atlas". Notes Serv. Géol. Maroc, Rabat. 29 (213): 44–48.
- ^ Alméras, Yves (January 1987). "Les Brachiopodes du Lias-Dogger: Paléontologie et biostratigraphie". Geobios. 20: 161–219. Bibcode:1987Geobi..20..161A. doi:10.1016/s0016-6995(87)80073-6.
- ^ Cooper, G. A. (1983). "Terebratulacea (Brachiopoda), Triassic to Recent: A Study of the Brachidia (Loops)". Smithsonian Contributions to Paleobiology (50): 1–445. doi:10.5479/si.00810266.50.1.
- ^ a b c d e f Alméras, Yves (19 November 1993). "The Liassic brachiopod zones of the Middle-Atlas, Morocco (Comparison with the French North Tethyan zonation)". Newsletters on Stratigraphy. 29 (3): 125–136. Bibcode:1993NewSt..29..125A. doi:10.1127/nos/29/1993/125.
- ^ a b c d e Elmi, S. (2002). "The Pliensbachian pelecypods assemblages of North Africa". 6th International Symposium on the Jurassic, Universities of Palermo and Torino. 6 (1): 54–56. Retrieved 25 June 2022.
- ^ Posenato, R.; Masetti, D. (2012). "Environmental control and dynamics of Lower Jurassic bivalve build-ups in the Trento Platform (Southern Alps, Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 361 (2): 1–13. Bibcode:2012PPP...361....1P. doi:10.1016/j.palaeo.2012.07.001.
- ^ Posenato, R. (2013). "Opisoma excavatum Boehm, a Lower Jurassic photosymbiotic alatoform-chambered bivalve". Lethaia. 46 (2): 424–437. Bibcode:2013Letha..46..424P. doi:10.1111/let.12020. Retrieved 3 January 2022.
- ^ Posenato, R.; Crippa, G. (2023). "An insight into the systematics of Plicatostylidae (Bivalvia), with a description of Pachygervillia anguillaensis n. gen. n. sp. from the Lithiotis Facies (Lower Jurassic) of Italy". Riv. It. Paleontol. Strat. 129 (3): 551–572. Bibcode:2023RIPS..12920273P. doi:10.54103/2039-4942/20273.
- ^ a b c d e f g h i Ishigaki, S.; Jossen, J.A. (1988). "Les empreintes de Dinosaures du Jurassique inférieur du Haut Atlas central marocain" (PDF). Notes et mémoires du Service géologique. 334 (1): 79–86. Retrieved 1 April 2022.
- ^ a b c d Jenny, J.; Jossen, J.A. (1982). "Découverte d'empreintes de pas de Dinosauriens dans le Jurassique inférieur (Pliensbachien) du Haut-Atlas central (Maroc) [Discovery of dinosaur footprints in the Lower Jurassic (Pliensbachian) of the central High Atlas (Morocco)]". Comptes Rendus de l'Académie des Sciences, Série II. 294 (1): 223–226. Retrieved 1 April 2022.
- ^ a b c d e f g Foster, John R.; Harris, Jerald D.; Milner, Andrew R.C.; Bordy, Emese M.; Sciscio, Lara; Castanera, Diego; Belvedere, Matteo; Xing, Lida; Lockley, Martin G. (2025). "Jurassic vertebrate tracks and traces". Vertebrate Ichnology. pp. 265–478. doi:10.1016/b978-0-443-13837-9.00015-9. ISBN 978-0-443-13837-9.
- ^ a b Molina-Pérez, R. & Larramendi, A. (2019). Dinosaurs Facts and Figures: The Theropods and Other Dinosauriformes. Princeton University Press. p. 264. ISBN 9780565094973.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ^ a b c Moussa, Masrour; Pérez-Lorente, Félix; Boutakiout, M.; Ladel, L.; Díaz-Martínez, I. (2010). "Nuevos yacimientos de icnitas domerienses en Ibaqalliwn (Aït Bou Guemez, Alto Atlas Central. Marruecos) [New Domerian dinosaur footprint sites from Ibaqalliwn (Aït Bou Guemez, Central High Atlas, Morocco)]" (PDF). Geogaceta. 48 (1): 91–94. Retrieved 1 April 2022.
- ^ Mudroch, Alexander; Richter, Ute; Joger, Ulrich; Kosma, Ralf; Idé, Oumarou; Maga, Abdoulaye (14 February 2011). "Didactyl Tracks of Paravian Theropods (Maniraptora) from the ?Middle Jurassic of Africa". PLOS ONE. 6 (2): e14642. Bibcode:2011PLoSO...614642M. doi:10.1371/journal.pone.0014642. PMC 3038851. PMID 21339816.
- ^ Plateau, H.; Giboulet, G.; Roch, E. (1937). "Sur la présence d'empreintes de Dinosauriens dans la région de Demnat (Maroc) [On the presence of dinosaur tracks in the Demnat region (Morocco)]". Comptes Rendus sommaires de la Société géologique de France. 7 (16): 241–242.
- ^ a b c d e f Masrour, Moussa; Ladel, Latifa; Pérez Lorente, Félix (2015). "New theropod and prosauropod ichnites from Issil-n-Aït Arbi (Lower Jurassic, Central High Atlas, Morocco)" (PDF). Geogaceta (57): 55–58.
- ^ a b c Hadri, M.; Boutakiout, M.; Pérez-Lorente, F. (2007). "Nuevos yacimientos de icnitas de dinosaurios carixiensis. Sur del Alto Atlas Central (Goulmima. Marruecos) [New Carixian dinosaur footprint localities. South of the Central High Atlas (Goulmima. Morocco)]". Geogaceta. 41 (1): 107–110.
- ^ a b c Boutakiout, Mohamed; Masrour, Moussa; Pérez-Lorente, Félix (2014). "Icnitas tireóforas y terópodas en Ansous (Pliensbachiense, Alto Atlas Central, Marruecos)" [Thyreophoran and theropod prints from Ansous (Pliensbachien, Hight Atlas Central, Morocco)] (PDF). Geogaceta (in Spanish) (55): 75–78. CORE output ID 60661519.
- ^ a b Pérez-Lorente, F.; Hadri, M.; Boutakiout, M. (2006). "Primeras icnitas de dinosaurio en sur del Alto Atlas Central. Carixiense (Formación de Arhbalou, Goulmima, Marruecos) [First dinosaur footprints in the southern Central High Atlas. Carixian (Arhbalou Formation, Goulmima, Morocco)]" (PDF). Geogaceta. 40 (1): 159–162.
- ^ Salisbury, Steven W.; Romilio, Anthony; Herne, Matthew C.; Tucker, Ryan T.; Nair, Jay P. (2016-12-12). "The Dinosaurian Ichnofauna of the Lower Cretaceous (Valanginian–Barremian) Broome Sandstone of the Walmadany Area (James Price Point), Dampier Peninsula, Western Australia". Journal of Vertebrate Paleontology. 36 (sup1): 1–152. Bibcode:2016JVPal..36S...1S. doi:10.1080/02724634.2016.1269539. ISSN 0272-4634.
- ^ a b c Nouri, J. (2007). "La paléoichnologie des empreintes de pas de dinosauriens imprimées dans les couches du Jurassique du Haut-Atlas Central". Université Mohamed. 1 (1): 1–125. Retrieved 1 April 2022.
- ^ a b c Farlow, J.O. (1992). "Sauropod tracks and trackmakers integrating the ichnological and skeletal records". Zubia. 10 (1): 89–138. Retrieved 3 July 2023.
- ^ Xing, L.; Lockley, M. G.; Zhang, J.; Klein, H.; Li, D.; Miyashita, T.; Kümmell, S. B. (2016). "A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record" (PDF). Historical Biology. 28 (7): 881–895. Bibcode:2016HBio...28..881X. doi:10.1080/08912963.2015.1052427. S2CID 130151263. Retrieved 18 December 2021.
- ^ Avanzini, Marco; Leonardi, Giuseppe; Mietto, Paolo (January 2003). "Lavinipes Cheminii Ichnogen., Ichnosp. nov., A Possible Sauropodomorph Track from the Lower Jurassic of the Italian Alps". Ichnos. 10 (2–4): 179–193. Bibcode:2003Ichno..10..179A. doi:10.1080/10420940390256195.
- ^ a b Moussa, Masrour; Pérez-Lorente, Félix (2014). "Otozoum trackway in Issil-Aït-Arbi (Lower Jurassic, Central High Atlas, Morocco)". Geogaceta. 56 (1): 107–110. Retrieved 1 April 2022.
- ^ a b Lockley, Martin G.; Lallensack, Jens N.; Sciscio, Lara; Bordy, Emese M. (February 2024). "The early Mesozoic saurischian trackways Evazoum and Otozoum : implications for 'prosauropod' (basal sauropodomorph) gaits". Historical Biology. 36 (2): 406–424. Bibcode:2024HBio...36..406L. doi:10.1080/08912963.2022.2163170.
- ^ Sciscio, Lara; Bordy, Emese M.; Lockley, Martin G.; Abrahams, Miengah (28 September 2023). "Basal sauropodomorph locomotion: ichnological lessons from the Late Triassic trackways of bipeds and quadrupeds (Elliot Formation, main Karoo Basin)". PeerJ. 11: e15970. doi:10.7717/peerj.15970. PMC 10542822. PMID 37790620.
- ^ a b Hadri, M.; Pereda Suberbiola, X.; Boutakiout, M.; Pérez-Lorente, F. (2007). "Icnitas de posibles dinosaurios tireóforos del Jurásico Inferior (Alto Atlas, Goulmima, Marruecos) [Possible thyreophoran dinosaur tracks from the Lower Jurassic (High Atlas, Goulmima. Morocco)]". Revista Española de Paleontología. 22 (2): 147–156.
- ^ a b c d e f Dubar, G.; Le Maître, D. (1935). "Sur la présence de Solénopores et de Spongiomorphides dans le Lias du Maroc". Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. 200 (7): 571–572.
- ^ a b c Courtinat, B.; Le Marrec, A. (1986). "Nouvelles donnees palynologiques sur les "Coaches Rouges" (Jurassique Moyen) de la Region de Demnat (Haut-Atlas,Moroc)" (PDF). Bulletin de l'Institut Scientifique. 10 (2): 15–20.